29 research outputs found

    Using Coexpression Protein Interaction Network Analysis to Identify Mechanisms of Danshensu Affecting Patients with Coronary Heart Disease

    No full text
    Salvia miltiorrhiza, known as Danshen, has attracted worldwide interest for its substantial effects on coronary heart disease (CHD). Danshensu (DSS) is one of the main active ingredients of Danshen on CHD. Although it has been proven to have a good clinical effect on CHD, the action mechanisms remain elusive. In the current study, a coexpression network-based approach was used to illustrate the beneficial properties of DSS in the context of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, two coexpression protein interaction networks (CePIN) in a CHD state (CHD CePIN) and a non-CHD state (non-CHD CePIN) were generated. Then, shared nodes and unique nodes in CHD CePIN were attained by conducting a comparison between CHD CePIN and non-CHD CePIN. By calculating the topological parameters of each shared node and unique node in the networks, and comparing the differentially expressed genes, target proteins involved in disease regulation were attained. Then, Gene Ontology (GO) enrichment was utilized to identify biological processes associated to target proteins. Consequently, it turned out that the treatment of CHD with DSS may be partly attributed to the regulation of immunization and blood circulation. Also, it indicated that sodium/hydrogen exchanger 3 (SLC9A3), Prostaglandin G/H synthase 2 (PTGS2), Oxidized low-density lipoprotein receptor 1 (OLR1), and fibrinogen gamma chain (FGG) may be potential therapeutic targets for CHD. In summary, this study provided a novel coexpression protein interaction network approach to provide an explanation of the mechanisms of DSS on CHD and identify key proteins which maybe the potential therapeutic targets for CHD

    Consumption of Goats’ Milk Protects Mice From Carbon Tetrachloride-Induced Acute Hepatic Injury and Improves the Associated Gut Microbiota Imbalance

    No full text
    Drugs used to treat liver diseases have serious side effects; it is important to search for safe functional foods with hepatoprotective functions and few side effects. In this study, potential hepatoprotective effects of goats’ milk and cows’ milk on mice with CCl4-induced acute hepatic injury were evaluated. We also elucidated the role of goats’ and cows’ milk on the regulation of CCl4-induced gut microbiota imbalance. In mice with liver damage induced by CCl4, administration of goats’ milk for 7 days prior to injection of CCl4 had beneficial effects on the indicators of liver damage within 1 day: the area of liver necrosis was small; activity of alanine transaminase (ALT) and aspartate transaminase (AST) and expression of the genes CYP2E1 and TNF-α were lower than that of model group of mice. By 7 days after CCl4 injection, there were no significant differences in liver damage indicators (ALT, AST, malondialdehyde, superoxide dismutase, and glutathione) between the goats’ milk group, which continued to receive goats’ milk, and the untreated control group of mice showing that goats’ milk continued to protect against liver damage. Throughout the entire experiment, the community of gut microbes from mice in the goats’ milk treatment was more similar to the untreated control group than to the cows’ milk group and the model group, indicating that intake of goats’ milk prior and post-CCl4 injection effectively prevented and alleviated the intestinal microbial disorder that caused by CCl4 in mice. Our research suggests that goats’ milk could be developed as a potential functional food to prevent/protect against liver injury

    A Novel Capacitorless 1T DRAM with Embedded Oxide Layer

    No full text
    A novel vertical dual surrounding gate transistor with embedded oxide layer is proposed for capacitorless single transistor DRAM (1T DRAM). The embedded oxide layer is innovatively used to improve the retention time by reducing the recombination rate of stored holes and sensing electrons. Based on TCAD simulations, the new structure is predicted to not only have the characteristics of fast access, random read and integration of 4F2 cell, but also to realize good retention and deep scaling. At the same time, the new structure has the potential of scaling compared with the conventional capacitorless 1T DRAM

    Table_1_Consumption of Goats’ Milk Protects Mice From Carbon Tetrachloride-Induced Acute Hepatic Injury and Improves the Associated Gut Microbiota Imbalance.xlsx

    No full text
    <p>Drugs used to treat liver diseases have serious side effects; it is important to search for safe functional foods with hepatoprotective functions and few side effects. In this study, potential hepatoprotective effects of goats’ milk and cows’ milk on mice with CCl<sub>4</sub>-induced acute hepatic injury were evaluated. We also elucidated the role of goats’ and cows’ milk on the regulation of CCl<sub>4</sub>-induced gut microbiota imbalance. In mice with liver damage induced by CCl<sub>4</sub>, administration of goats’ milk for 7 days prior to injection of CCl<sub>4</sub> had beneficial effects on the indicators of liver damage within 1 day: the area of liver necrosis was small; activity of alanine transaminase (ALT) and aspartate transaminase (AST) and expression of the genes CYP2E1 and TNF-α were lower than that of model group of mice. By 7 days after CCl<sub>4</sub> injection, there were no significant differences in liver damage indicators (ALT, AST, malondialdehyde, superoxide dismutase, and glutathione) between the goats’ milk group, which continued to receive goats’ milk, and the untreated control group of mice showing that goats’ milk continued to protect against liver damage. Throughout the entire experiment, the community of gut microbes from mice in the goats’ milk treatment was more similar to the untreated control group than to the cows’ milk group and the model group, indicating that intake of goats’ milk prior and post-CCl<sub>4</sub> injection effectively prevented and alleviated the intestinal microbial disorder that caused by CCl<sub>4</sub> in mice. Our research suggests that goats’ milk could be developed as a potential functional food to prevent/protect against liver injury.</p

    Biodiversity responses of gut mycobiota and bacteriophages induced by probiotic consumption

    No full text
    An increasing number of studies have widely recognized that the gut mycobiota and bacteriophages are closely related to human health and disease, although little is known about the responses of fungi and phages that are induced by probiotics. In this study, based on published longitudinal cohorts, a meta-analysis of intestinal fungi and bacteriophages after probiotic consumption was performed. On the fungi, our results showed that probiotics had an effect size on the composition of intestinal fungi, and the strain specificity of probiotics were the most important influencing factors. In terms of phage, probiotics regulated the gut microbiome, which led to elevation and diminishment of multiple phages in the gut, although dramatic changes did not occur in the diversity and structure of intestinal bacteriophages after intervention with probiotics. Our study extended the understanding of the effects of probiotics on intestinal fungi and bacteriophages

    Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China

    No full text
    Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial resources

    Activation Enhancement and Grain Size Improvement for Poly-Si Channel Vertical Transistor by Laser Thermal Annealing in 3D NAND Flash

    No full text
    The bit density is generally increased by stacking more layers in 3D NAND Flash. Lowering dopant activation of select transistors results from complex integrated processes. To improve channel dopant activation, the test structure of vertical channel transistors was used to investigate the influence of laser thermal annealing on dopant activation. The activation of channel doping by different thermal annealing methods was compared. The laser thermal annealing enhanced the channel activation rate by at least 23% more than limited temperature rapid thermal annealing. We then comprehensively explore the laser thermal annealing energy density on the influence of Poly-Si grain size and device performance. A clear correlation between grain size mean and grain size sigma, large grain size mean and sigma with large laser thermal annealing energy density. Large laser thermal annealing energy density leads to tightening threshold voltage and subthreshold swing distribution since Poly-Si grain size regrows for better grain size distribution with local grains optimization. As an enabler for next-generation technologies, laser thermal annealing will be highly applied in 3D NAND Flash for better device performance with stacking more layers, and opening new opportunities of novel 3D architectures in the semiconductor industry

    The distal intestinal microbiome of hybrids of Hainan black goats and Saanen goats.

    No full text
    Intestinal microbiota performed numerous important functions during digestion. The first filial generation (F1) hybrids of Hainan black goats and Saanen goats had different traits, black goats (BG) and white goats (WG), which also brought different production performance. We explored the difference of gut microbiota between black goats and white goats that both belonged to the first filial generation (F1) hybrids. In general, the alpha diversity of the black goat group was significantly higher than the white goat group. The species richness had no significant difference, while the species evenness of BG was higher than WG. Bacteroides, Oscillospira, Alistipes, Ruminococcus, Clostridium and Oscillibacter, as the core gut microbial genera, all had high abundance in BG and WG group. Only the Bacteroides and Bacteroidaceae 5-7N15 were the different genera between the BG and WG group, of which Bacteroides overlapped with the core genera and enriched in the WG group. Besides, PICRUSt analysis showed that there was a high abundance in the secondary metabolic pathways including membrane transport, replication and repair, carbohydrate metabolism and amino acid metabolism. We found the intestinal microbial species of black goats and white goats were very similar for living in the identical growing environment and feeding conditions, but there was still a slight difference in the content. On the one hand, it was proved that the small effect of genotype and the great effect of diet affected the intestinal microbiota together. On the other hand, it was also proved that these different traits of first filial generation (F1) hybrids may not related to gut microbiota and only because of different genotype. Moreover, characterization of the gut microbiota in BG and WG will be useful in goats gut microbiota research

    Presentation1.pdf

    No full text
    <p>Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial resources.</p

    Characterization of Fecal Microbiota across Seven Chinese Ethnic Groups by Quantitative Polymerase Chain Reaction

    No full text
    <div><p>The human gut microbiota consists of complex microbial communities, which possibly play crucial roles in physiological functioning and health maintenance. China has evolved into a multicultural society consisting of the major ethnic group, Han, and 55 official ethnic minority groups. Nowadays, these minority groups inhabit in different Chinese provinces and some of them still keep their unique culture and lifestyle. Currently, only limited data are available on the gut microbiota of these Chinese ethnic groups. In this study, 10 major fecal bacterial groups of 314 healthy individuals from 7 Chinese ethnic origins were enumerated by quantitative polymerase chain reaction. Our data confirmed that the selected bacterial groups were common to all 7 surveyed ethnicities, but the amount of the individual bacterial groups varied to different degree. By principal component and canonical variate analyses of the 314 individuals or the 91 Han subjects, no distinct group clustering pattern was observed. Nevertheless, weak differences were noted between the Han and Zhuang from other ethnic minority groups, and between the Heilongjiang Hans from those of the other provinces. Thus, our results suggest that the ethnic origin may contribute to shaping the human gut microbiota.</p></div
    corecore