12 research outputs found

    Acute multivessel coronary artery occlusion: a case report

    Get PDF
    BACKGROUND: In terms of clinical and angiographic findings, multiple simultaneous coronary occlusions in acute myocardial infarction are infrequent, and the mechanism of the occlusions is unclear. CASE PRESENTATION: We herein report a rare case of two simultaneously occluded coronary arteries, one of which subsequently underwent spontaneous lysis. An 88-year-old man had a 3-hour attack of acute crushing retrosternal chest pain. His first electrocardiogram showed ST-segment elevation in the inferior (II, III, and aVF) and anterior (V3–V6) leads. His second electrocardiogram in the cardiac care unit showed ST-segment elevation in the inferior leads but ST-segment depression in the anterior leads. Emergency coronary angiography revealed that the right coronary artery was acutely and totally occluded at the midportion and that the proximal and midportion of the left anterior descending coronary artery had an acute thrombus. According to his electrocardiogram and coronary angiography findings, we inferred that the right coronary artery and left anterior descending coronary artery first totally occluded simultaneously, and then the thrombus in the left anterior descending coronary artery spontaneously underwent partial lysis. Therefore, intervention of the right coronary artery was performed followed by injection of glycoprotein IIB-IIIA inhibitor into the left anterior descending coronary artery. He had an uneventful hospital course and was discharged home 10 days later. CONCLUSION: Because patients with multivessel coronary artery occlusion are often in serious condition, abnormal electrocardiographic results must be identified and affected vessel should be opened timely and efficiently to save the myocardium and reduce complications such as congestive heart failure

    GlyphControl: Glyph Conditional Control for Visual Text Generation

    Full text link
    Recently, there has been a growing interest in developing diffusion-based text-to-image generative models capable of generating coherent and well-formed visual text. In this paper, we propose a novel and efficient approach called GlyphControl to address this task. Unlike existing methods that rely on character-aware text encoders like ByT5 and require retraining of text-to-image models, our approach leverages additional glyph conditional information to enhance the performance of the off-the-shelf Stable-Diffusion model in generating accurate visual text. By incorporating glyph instructions, users can customize the content, location, and size of the generated text according to their specific requirements. To facilitate further research in visual text generation, we construct a training benchmark dataset called LAION-Glyph. We evaluate the effectiveness of our approach by measuring OCR-based metrics and CLIP scores of the generated visual text. Our empirical evaluations demonstrate that GlyphControl outperforms the recent DeepFloyd IF approach in terms of OCR accuracy and CLIP scores, highlighting the efficacy of our method.Comment: Technical report. The codes will be released at https://github.com/AIGText/GlyphControl-releas

    Genome-wide identification of the WRKY gene family in Camellia oleifera and expression analysis under phosphorus deficiency

    Get PDF
    Camellia oleifera Abel. is an economically important woody edible-oil species that is mainly cultivated in hilly areas of South China. The phosphorus (P) deficiency in the acidic soils poses severe challenges for the growth and productivity of C. oleifera. WRKY transcription factors (TFs) have been proven to play important roles in biological processes and plant responses to various biotic/abiotic stresses, including P deficiency tolerance. In this study, 89 WRKY proteins with conserved domain were identified from the C. oleifera diploid genome and divided into three groups, with group II further classified into five subgroups based on the phylogenetic relationships. WRKY variants and mutations were detected in the gene structure and conserved motifs of CoWRKYs. Segmental duplication events were considered as the primary driver in the expanding process of WRKY gene family in C. oleifera. Based on transcriptomic analysis of two C. oleifera varieties characterized with different P deficiency tolerances, 32 CoWRKY genes exhibited divergent expression patterns in response to P deficiency stress. qRT-PCR analysis demonstrated that CoWRKY11, -14, -20, -29 and -56 had higher positive impact on P-efficient CL40 variety compared with P-inefficient CL3 variety. Similar expression trends of these CoWRKY genes were further observed under P deficiency with longer treatment period of 120d. The result indicated the expression sensitivity of CoWRKYs on the P-efficient variety and the C. oleifera cultivar specificity on the P deficiency tolerance. Tissue expression difference showed CoWRKYs may play a crucial role in the transportation and recycling P in leaves by affecting diverse metabolic pathways. The available evidences in the study conclusively shed light on the evolution of the CoWRKY genes in C. oleifera genome and provided a valuable resource for further investigation of functional characterization of WRKY genes involved to enhance the P deficiency tolerance in C. oleifera

    Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel.

    No full text
    Camellia oleifera Abel (C. oleifera) absorb nutrients from surrounding soils and its yield is highly influenced by these nutrients and by fertilizer application. Thus, the soil nutrients play a central role in C. oleifera production. This study investigated the effects of biogas slurry applications on soil nutrients and economic traits of C. oleifera fruits. Five different amounts of biogas slurry (0, 10, 20, 30, or 40 kg/plant/year, three applications per year) were used as fertilizer for C. oleifera plants in 2015 and 2016. The nutrients of rhizosphere soil and the economic traits, including fruit yield, seed rate, and oil yield of C. oleifera fruit, were measured each year. The results showed that fertilization with biogas slurry significantly increased soil organic matter, available nitrogen (N), phosphorus (P), and potassium (K) both in 2015 and 2016. Increases in soil available N, P, and K were maximal in the highest slurry application group followed by the second highest application group. The oil yield correlated with the content of soil available P in both 2015 and 2016, and with soil organic matter in 2015. Fertilization with biogas slurry decreased the saturated fatty acid content in fruit but had no effect on the unsaturated fatty acid content. In conclusion, fertilization with biogas slurry increased rhizosphere soil nutrients and fruit economic traits of C. oleifera and rates of at least30 kg/plant/year had the most positive effects. This study expands the knowledge of fertilization with biogas slurry in C. oleifera production

    Identification, Classification, and Expression Analysis of the <i>Triacylglycerol Lipase</i> (<i>TGL</i>) Gene Family Related to Abiotic Stresses in Tomato

    No full text
    Triacylglycerol Lipases (TGLs) are the major enzymes involved in triacylglycerol catabolism. TGLs hydrolyze long-chain fatty acid triglycerides, which are involved in plant development and abiotic stress responses. Whereas most studies of TGLs have focused on seed oil metabolism and biofuel in plants, limited information is available regarding the genome-wide identification and characterization of the TGL gene family in tomato (Solanum lycopersicum L.). Based on the latest published tomato genome annotation ITAG4.0, 129 SlTGL genes were identified and classified into 5 categories according to their structural characteristics. Most SlTGL genes were distributed on 3 of 12 chromosomes. Segment duplication appeared to be the driving force underlying expansion of the TGL gene family in tomato. The promoter analysis revealed that the promoters of SlTGLs contained many stress responsiveness cis-elements, such as ARE, LTR, MBS, WRE3, and WUN-motifs. Expression of the majority of SlTGL genes was suppressed following exposure to chilling and heat, while it was induced under drought stress, such as SlTGLa9, SlTGLa6, SlTGLa25, SlTGLa26, and SlTGLa13. These results provide valuable insights into the roles of the SlTGL genes family and lay a foundation for further functional studies on the linkage between triacylglycerol catabolism and abiotic stress responses in tomato

    Minor increases in Phyllostachys edulis (Moso bamboo) biomass despite evident alterations of soil bacterial community structure after phosphorus fertilization alone: Based on field studies at different altitudes

    No full text
    Hosseini Bai, S ORCiD: 0000-0001-8646-6423Understanding the relationships among bamboo growth, soil microbial community and phosphorus (P) fertilization may shed new light on the optimization of P application rate and ecological function of P nutrient in forest ecosystem. This study aimed to evaluate the impacts of P fertilizations (25 and 50 kg P ha−1) on Phyllostachys edulis (Moso bamboo) growths, soil nutrient contents and microbial properties at different altitudes (300 and 800 m) and to link Moso bamboo growths with abiotic and biotic factors. Compared with the blank control, P fertilizations alone generated negligible impacts on the increases of Moso bamboo biomass and soil available P contents. Bacterial and fungal community diversities kept relatively stable after P fertilizations. Contrastingly, relative to the control, 25 kg P ha−1 application significantly enhanced the relative abundance of Proteobacteria and changed bacterial community structure at low altitude. At low and high altitudes, 50 kg P ha−1 applications significantly increased the relative abundances of Ascomycota. The Moso bamboo growth might be stimulated by the increases of soil total nitrogen, available P, Proteobacteria and Ascomycota. Our results demonstrated that P fertilization alone significantly changed soil bacterial community structure but generated negligibly stimulating role in the increase of Moso bamboo biomass. © 2019 Elsevier B.V

    Effects of Scion Variety on the Phosphorus Efficiency of Grafted Camellia oleifera Seedlings

    No full text
    Grafting provides a way to improve tolerance to low phosphorus (P) stress for plants, and has been extensively applied in commercial cultivars grafted onto appropriate rootstocks. However, little literature is available concerning the scion-mediated effect on P efficiency in grafted plants. In this study, three different Camellia oleifera Abel. scion cultivars (G8, G83-1, and W2) were grafted onto the same rootstock (W2) under controls (0.5 mM) and low-P (0 mM) availability for eight months. The results showed that the scions significantly affected root-to-shoot weight ratios, the root morphology with a diameter larger than 1 mm, P accumulation, and the P utilization efficiency (PUE) of the root. A higher increase in the root-to-shoot weight ratio under the low-P supply was observed in the G83-1/W2 (26.15%) than in the G8/W2 (0%) and the W2/W2 (5.32%). Root PUE of the scion G8, G83-1, and W2 was improved by up to 113.73%, 45.46%, and 20.97% under the low-P supply. Moreover, G8/W2 exhibited higher shoot P accumulation and the highest root PUE under the low-P supply, indicating a high capability to tolerate P deficiency by maximizing the cost-effectiveness of P remobilization to photosynthetic organs. This suggested the vigorous variety of G8 could be a promising scion to improve grafted C. oleifera tolerance to low-P stress. Our results would have important implications for exploration and identification of a superior scion variety to enhance the ability of resistance concerning P deficiency stress in C. oleifera

    Facile Synthesis of Nitrogen Self-Doped Porous Carbon Derived from Cicada Shell via KOH Activation for Simultaneous Detection and Removal of Cu2+

    No full text
    Sensitive detection and efficient removal of heavy metal ions with high toxicity and mobility are of great importance for environmental monitoring and control. Although several kinds of functional materials have been reported for this purpose, their preparation processes are complicated. Herein, nitrogen self-doped activated porous biochar (NAC) was synthesized in a facile process via an activation&ndash;carbonization strategy from cicada shell rich in chitin, and subsequently employed as an effective functional material for the simultaneous determination and removal of Cu2+ from aqueous media. With its unique porous structure and abundant oxygen-containing functional groups, along with the presence of heteroatoms, NAC exhibits high sensitivity for the electrochemical sensing of Cu2+ in concentrations ranging from 0.001 to 1000 &mu;g&middot;L&minus;1, with a low detection limit of 0.3 ng&middot;L&minus;1. Additionally, NAC presents an excellent removal efficiency of over 78%. The maximum adsorption capacity is estimated at 110.4 mg/g. These excellent performances demonstrate that NAC could serve as an efficient platform for the detection and removal of Cu2+ in real environmental areas
    corecore