4 research outputs found

    Label-Free Sensing of Human 8‑Oxoguanine DNA Glycosylase Activity with a Nanopore

    No full text
    Human 8-oxoguanine DNA glycosylase (hOGG1) plays a significant role in maintaining the genomic integrity of living organisms for its capability of repairing DNA lesions. Accurate detection of hOGG1 activity would greatly facilitate the screening and early diagnosis of diseases. In this work, we report a nanopore-based sensing strategy to probe the hOGG1 activity by employing the enzyme–catalytic cleavage reaction of DNA substrate. The hOGG1 specifically catalyzed the removal of the 8-hydroxyguanine (8-oxoG) and cleaved the DNA substrates immobilized on magnetic beads, thereby releasing the output DNA which would quantitatively produce the signature current events when subjected to α-hemolysin (α-HL) nanopore test. The approach enables the sensitive detection of hOGG1 activity without the need of any labeling or signal amplification route. Furthermore, the method can be applied to assay the inhibition of hOGG1 and evaluate the activity of endogenous hOGG1 in crude cell extracts. Importantly, since DNAs with specific sequences are the catalytic substrates of a wide variety of enzymes, the proposed strategy should be universally applicable for probing the activities of different types of enzymes with nanopore sensors

    Ultrasensitive Detection of Cancer Cells Combining Enzymatic Signal Amplification with an Aerolysin Nanopore

    No full text
    Sensitive detection of cancer cells at extremely low concentrations would greatly facilitate the screening and early diagnosis of cancer. Herein, we present a novel nanopore-based strategy for ultrasensitive detection of Ramos cells (human Burkitt’s lymphoma cells), by combining the enzymatic signal amplification with an aerolysin nanopore sensor. In this assay, an aptamer for Ramos cells was prehybridized with a short complementary DNA. The presence of target cells causes the target–aptamer complex to unwind to free the complementary DNA, which would subsequently trigger the enzymatic cycling amplification. This process eventually generated a large number of output DNA, which could quantitatively produce characteristic current events when translocated through aerolysin. The proposed method exhibits excellent sensitivity, and as few as 5 Ramos cells could be detected. With good selectivity, the approach can allow for the determination of cancer cells in human serum, offering a powerful tool for biomedical research and clinical diagnosis

    Nanopore-Based Selective Discrimination of MicroRNAs with Single-Nucleotide Difference Using Locked Nucleic Acid-Modified Probes

    No full text
    The accurate discrimination of microRNAs (miRNAs) with highly similar sequences would greatly facilitate the screening and early diagnosis of diseases. In the present work, a locked nucleic acid (LNA)-modified probe was designed and used for α-hemolysin (α-HL) nanopore to selectively and specifically identify miRNAs. The hybridization of the LNA probe with the target miRNAs generated unique long-lived signals in the nanopore thus facilitated an accurate discrimination of miRNAs with similar sequences, even a single-nucleotide difference. Furthermore, the developed nanopore-based analysis with LNA probe could selectively detect target miRNAs in a natural serum background. This selective and sensitive approach may be highly valuable in the detection of clinically relevant biomarkers in complex samples

    Nanopore-Based Selective Discrimination of MicroRNAs with Single-Nucleotide Difference Using Locked Nucleic Acid-Modified Probes

    No full text
    The accurate discrimination of microRNAs (miRNAs) with highly similar sequences would greatly facilitate the screening and early diagnosis of diseases. In the present work, a locked nucleic acid (LNA)-modified probe was designed and used for α-hemolysin (α-HL) nanopore to selectively and specifically identify miRNAs. The hybridization of the LNA probe with the target miRNAs generated unique long-lived signals in the nanopore thus facilitated an accurate discrimination of miRNAs with similar sequences, even a single-nucleotide difference. Furthermore, the developed nanopore-based analysis with LNA probe could selectively detect target miRNAs in a natural serum background. This selective and sensitive approach may be highly valuable in the detection of clinically relevant biomarkers in complex samples
    corecore