12 research outputs found
MOS2, a Protein Containing G-Patch and KOW Motifs, Is Essential for Innate Immunity in Arabidopsis thaliana
SummaryInnate immunity is critical for sensing and defending against microbial infections in multicellular organisms. In plants, disease resistance genes (R genes) play central roles in recognizing pathogens and initiating downstream defense cascades [1]. Arabidopsis SNC1 encodes a TIR-NBS-LRR-type R protein with a similar structure to nucleotide binding oligomerization domain (Nod) proteins in animals [2, 3]. A point mutation in the region between the NBS and LRR of SNC1 results in constitutive activation of defense responses in the snc1 mutant. Here, we report the identification and characterization of mos2-1, a mutant suppressing the constitutive defense responses in snc1. Analysis of mos2 single mutants indicated that it is not only required for resistance specified by multiple R genes, but also for basal resistance. Map-based cloning of MOS2 revealed that it encodes a novel nuclear protein that contains one G-patch and two KOW domains and has homologs across the animal kingdom. The presence of both G-patch and KOW domains in the MOS2 protein suggests that it probably functions as an RNA binding protein critical for plant innate immunity [4, 5]. Our discovery on the biological functions of MOS2 will shed light on functions of the MOS2 homologs in animals, where they may also play important roles in innate immunity
Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity
In order to defend against microbial infection, plants employ a complex immune system that relies partly on resistance (R) proteins that initiate intricate signaling cascades upon pathogen detection. The resistance signaling network utilized by plants is only partially characterized. A genetic screen conducted to identify novel defense regulators involved in this network resulted in the isolation of the snc6-1D mutant. Positional cloning revealed that this mutant contained a molecular lesion in the chilling sensitive 3 (CHS3) gene, thus the allele was renamed chs3-2D. CHS3 encodes a TIR-NB-LRR R protein that contains a C-terminal zinc-binding LIM (Lin-11, Isl-1, Mec-3) domain. Although this protein has been previously implicated in cold stress and defense response, the role of the LIM domain in modulating protein activity is unclear. The chs3-2D allele contains a G to A point mutation causing a C1340 to Y1340 substitution close to the LIM domain. It encodes a dominant gain-of-function mutation. The chs3-2D mutant is severely stunted and displays curled leaf morphology. Additionally, it constitutively expresses PATHOGENESIS-RELATED (PR) genes, accumulates salicylic acid, and shows enhanced resistance to the virulent oomycete isolate Hyaloperonospora arabidopsidis (H.a.) Noco2. Subcellular localization assays using GFP fusion constructs indicate that both CHS3 and chs3-2D localize to the nucleus. A third chs3 mutant allele, chs3-3D, was identified in an unrelated genetic screen in our lab. This allele contains a C to T point mutation resulting in an M1017 to V1017 substitution in the LRR–LIM linker region. Additionally, a chs3-2D suppressor screen identified two revertant alleles containing secondary mutations that abolish the mutant morphology. Analysis of the locations of these molecular lesions provides support for the hypothesis that the LIM domain represses CHS3 R-like protein activity. This repression may occur through either autoinhibition or binding of a negative defense regulator
SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity
Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC
Homoharringtonine, a plant alkaloid, has been reported to suppress protein synthesis and has been approved by the US Food and Drug Administration for the treatment of chronic myeloid leukemia. Here we show that in acute myeloid leukemia (AML), homoharringtonine potently inhibits cell growth/viability and induces cell cycle arrest and apoptosis, significantly inhibits disease progression in vivo, and substantially prolongs survival of mice bearing murine or human AML. Strikingly, homoharringtonine treatment dramatically decreases global DNA 5-hydroxymethylcytosine abundance through targeting the SP1/TET1 axis, and TET1 depletion mimics homoharringtonine’s therapeutic effects in AML. Our further 5hmC-seq and RNA-seq analyses, followed by a series of validation and functional studies, suggest that FLT3 is a critical down-stream target of homoharringtonine/SP1/TET1/5hmC signaling, and suppression of FLT3 and its downstream targets (e.g. MYC) contributes to the high sensitivity of FLT3-mutated AML cells to homoharringtonine. Collectively, our studies uncover a previously unappreciated DNA epigenome-related mechanism underlying the potent antileukemic effect of homoharringtonine, which involves suppression of the SP1/TET1/5hmC/FLT3/MYC signaling pathways in AML. Our work also highlights the particular promise of clinical application of homoharringtonine to treat human AML with FLT3 mutations, which accounts for more than 30% of total cases of AML
Activation of Plant Immune Responses by a Gain-of-Function Mutation in an Atypical Receptor-Like Kinase1[C][W][OA]
Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive1 (snc1) contains a gain-of-function mutation in a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat Resistance (R) protein and it has been a useful tool for dissecting R-protein-mediated immunity. Here we report the identification and characterization of snc4-1D, a semidominant mutant with snc1-like phenotypes. snc4-1D constitutively expresses defense marker genes PR1, PR2, and PDF1.2, and displays enhanced pathogen resistance. Map-based cloning of SNC4 revealed that it encodes an atypical receptor-like kinase with two predicted extracellular glycerophosphoryl diester phosphodiesterase domains. The snc4-1D mutation changes an alanine to threonine in the predicted cytoplasmic kinase domain. Wild-type plants transformed with the mutant snc4-1D gene displayed similar phenotypes as snc4-1D, suggesting that the mutation is a gain-of-function mutation. Epistasis analysis showed that NON-RACE-SPECIFIC DISEASE RESISTANCE1 is required for the snc4-1D mutant phenotypes. In addition, the snc4-1D mutant phenotypes are partially suppressed by knocking out MAP KINASE SUBSTRATE1, a positive defense regulator associated with MAP KINASE4. Furthermore, both the morphology and constitutive pathogen resistance of snc4-1D are partially suppressed by blocking jasmonic acid synthesis, suggesting that jasmonic acid plays an important role in snc4-1D-mediated resistance. Identification of snc4-1D provides us a unique genetic system for analyzing the signal transduction pathways downstream of receptor-like kinases
Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms
Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members—MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)—that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity
Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in Arabidopsis[C][W]
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein–mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-κB transcription factors, resulting in nuclear accumulation of NF-κB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs