90 research outputs found

    Searching for neutrino emissions from multi-frequency sources

    Full text link
    Pinpointing the neutrino sources is crucial to unveil the mystery of high-energy cosmic rays. The search for neutrino-source candidates from coincident neutrino-photon signatures and electromagnetic objects with peculiar flaring behaviors have the potential to increase our chances of finding neutrino emitters. In this paper, we first study the temporal correlations of astrophysical flares with neutrinos, considering a few hundreds of multi-frequency sources from ALMA, WISE, Swift, and Fermi in the containment regions of IceCube high-energy alerts. Furthermore, the spatial correlations between blazars and neutrinos are investigated using the subset of 10-year IceCube track-like neutrinos with around 250 thousand events. In the second test, we account for 2700 blazars with different types of flaring phases in addition to sole position. No significant neutrino emissions were found from our analyses. Our results indicate an interesting trend showing the infrared flaring stages of WISE blazars might be correlated with arrival times of the neutrino alerts. Possible overflow of neutrinos associated with two of our blazar sub-samples are also illustrated. One is characterized by a significant flaring lag in infrared with respect to gamma-rays, like seen for TXS0506+056, and the other is characterized by highly simultaneous infrared and gamma-ray flares. These phenomena suggest the need to improve current multi-frequency light-curve catalogs to pair with the advent of more sensitive neutrino observatories.Comment: 30 pages, 18 figure

    A fast tunable driver of light source for the TRIDENT Pathfinder experiment

    Full text link
    TRIDENT (The tRopIcal DEep-sea Neutrino Telescope) is a proposed next-generation neutrino telescope to be constructed in the South China Sea. In September 2021, the TRIDENT Pathfinder experiment (TRIDENT EXplorer, T-REX for short) was conducted to evaluate the in-situ optical properties of seawater. The T-REX experiment deployed three digital optical modules at a depth of 3420 meters, including a light emitter module (LEM) and two light receiver modules (LRMs) equipped with photomultiplier tubes (PMTs) and cameras to detect light signals. The LEM emits light in pulsing and steady modes. It features a fast tunable driver to activate light-emitting diodes (LEDs) that emit nanosecond-width light pulses with tunable intensity. The PMTs in the LRM receive single photo-electron (SPE) signals with an average photon number of approximately 0.3 per 1-microsecond time window, which is used to measure the arrival time distribution of the SPE signals. The fast tunable driver can be remotely controlled in real-time by the data acquisition system onboard the research vessel, allowing for convenient adjustments to the driver's parameters and facilitating the acquisition of high-quality experimental data. This paper describes the requirements, design scheme, and test results of the fast tunable driver, highlighting its successful implementation in the T-REX experiment and its potential for future deep-sea experiments

    Seismic loss assessment for buildings with multiple LOD BIM data

    Get PDF
    Earthquake-induced economic loss of buildings is a fundamental concern for earthquake-resilient cities. The FEMA P-58 method is a state-of-the-art seismic loss assessment method for buildings. Nevertheless, because the FEMA P-58 method is a refined component-level loss assessment method, it requires highly detailed data as the input. Consequently, the knowledge of building details will affect the seismic loss assessment. In this study, a seismic loss assessment approach for buildings combining building information modeling (BIM) with the FEMA P-58 method is proposed. The detailed building data are automatically obtained from the building information model in which the building components may have different levels of development (LODs). The determination of component type and the development of the component vulnerability function when the information is incomplete are proposed. Finally, to demonstrate the rationality of the proposed method, an office building that is available online is selected, and the seismic loss assessments with multi-LOD BIM data are performed as case studies. The results show that, on the one hand, even if the available building information is limited, the proposed method can still produce an acceptable loss assessmenton the other hand, given more information, the accuracy of the assessment can be improved and the uncertainty can be reduced using the proposed method.The study is financial supported by the National Natural Science Foundation of China (No. 51578320)

    Simulation study on the optical processes at deep-sea neutrino telescope sites

    Full text link
    The performance of a large-scale water Cherenkov neutrino telescope relies heavily on the transparency of the surrounding water, quantified by its level of light absorption and scattering. A pathfinder experiment was carried out to measure the optical properties of deep seawater in South China Sea with light-emitting diodes (LEDs) as light sources, photon multiplier tubes (PMTs) and cameras as photon sensors. Here, we present an optical simulation program employing the Geant4 toolkit to understand the absorption and scattering processes in the deep seawater, which helps to extract the underlying optical properties from the experimental data. The simulation results are compared with the experimental data and show good agreements. We also verify the analysis methods that utilize various observables of the PMTs and the cameras with this simulation program, which can be easily adapted by other neutrino telescope pathfinder experiments and future large-scale detectors.Comment: 27 pages, 11 figure
    • 

    corecore