85 research outputs found

    Semantic Object Parsing with Local-Global Long Short-Term Memory

    Full text link
    Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods often leverage the contextual information through post-processing predicted confidence maps. In this work, we propose a novel deep Local-Global Long Short-Term Memory (LG-LSTM) architecture to seamlessly incorporate short-distance and long-distance spatial dependencies into the feature learning over all pixel positions. In each LG-LSTM layer, local guidance from neighboring positions and global guidance from the whole image are imposed on each position to better exploit complex local and global contextual information. Individual LSTMs for distinct spatial dimensions are also utilized to intrinsically capture various spatial layouts of semantic parts in the images, yielding distinct hidden and memory cells of each position for each dimension. In our parsing approach, several LG-LSTM layers are stacked and appended to the intermediate convolutional layers to directly enhance visual features, allowing network parameters to be learned in an end-to-end way. The long chains of sequential computation by stacked LG-LSTM layers also enable each pixel to sense a much larger region for inference benefiting from the memorization of previous dependencies in all positions along all dimensions. Comprehensive evaluations on three public datasets well demonstrate the significant superiority of our LG-LSTM over other state-of-the-art methods.Comment: 10 page

    Type-I superconductivity in Al6_6Re

    Full text link
    While the pure elements tend to exhibit Type-I rather than Type-II superconductivity, nearly all compound superconductors are Type-II, with only a few known exceptions. We report single crystal growth and physical characterization of the rhenium aluminide Al6_6Re, which we conclude is a Type-I superconductor based on magnetization, ac-susceptibility, and specific-heat measurements. This detection of superconductivity, despite the strong similarity of Al6_6Re to a family of W and Mo aluminides that do not superconduct, suggests that these aluminides are an ideal testbed for identifying the relative importance of valence electron count and inversion symmetry in determining whether a material will superconduct.Comment: 9 pages, 7 figures, CIF file as ancillar

    Surface structure and multigap superconductivity of V3Si (111) revealed by scanning tunneling microscopy

    Full text link
    V3Si, a classical silicide superconductor with relatively high TC (~16 K), is promising for constructing silicon-based superconducting devices and hetero-structures. However, real space characterization on its surfaces and superconducting properties are still limited. Here we report the first low-temperature scanning tunnelling microscopy (STM) study on cleaned V3Si (111) single crystal surface. We observed a r3 by r3 superstructure which displays mirror symmetry between adjacent terraces, indicating the surface is V-terminated and reconstructed. The tunneling spectrum shows full superconducting gap with double pairs of coherence peaks, but has a relatively small gap size with comparing to bulk TC. Impurity induced in-gap state is absent on surface defects but present on introduced magnetic adatoms. Upon applying magnetic field, a hexagonal vortex lattice is visualized. Interestingly, the vortex size is found to be field dependent, and the coherence length measured from single vortex at low field is significantly larger than estimated value from bulk H_c2. These results reflect V3Si is a multi-band, s- wave superconductor

    Knot undulator to generate linearly polarized photons with low on-axis power density

    Full text link
    Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method
    • …
    corecore