1 research outputs found

    The genotoxicity impact of heavy metals on the <i>Escherichia Coli</i>

    No full text
    In the present work, the genotoxicity of Hg2+, Ag+, Cr6+, Ni2+, Pb2+, Co2+, Mn2+, Zn2+, and Cr3+ was investigated via a quantitative toxicogenomics assay, in order to understand the toxic mechanism of heavy metals with greater depth. Under the experimental conditions, Hg2+, Ag+, and Cr6+ behaved more serious toxic impact on the expression of functional genes (eg., oxyR, katG, grxA, osmE, emrE, dinG) than Ni2+, Pb2+, Co2+, Mn2+, Zn2+, and Cr3+, while the protein, oxidative, and membrane stress response pathways were more sensitive to the toxicity of Hg2+, Ag+, and Cr6+ than the DNA and general stress response pathways. Comparing with the other kinds of heavy metals, Ni2+, Pb2+, Co2+, and Mn2+ altered the expression of functional genes (uvrY, recX, mutY, and sbmC) related to the DNA stress response pathways more seriously, while Zn2+ and Cr3+ changed the expression of the functional genes (yfjG, ydgL, ssrA, and osmC) associated with the general stress response pathway more significantly. Meanwhile, the toxicity of Ni2+, Pb2+, Co2+, and Mn2+ were slightly higher than that of Zn2+ and Cr3+ in terms of the total value of transcriptional effect level Index (TELI) via detecting the promoter activities of different functional genes. In addition, to survive from the toxicity of heavy metals, the expression of multidrug efflux genes (ydgL, cyoA, emrA, and emrE) and toxicity-resistant genes (Ion, dnaJ, clpB, mutY, dnaK, rpoD, sbmC) mainly functioned.</p
    corecore