1,411 research outputs found

    Fluctuation-driven insulator-to-metal transition in an external magnetic field

    Full text link
    We consider a model for a metal-insulator transition of correlated electrons in an external magnetic field. We find a broad region in interaction and magnetic field where metallic and insulating (fully magnetized) solutions coexist and the system undergoes a first-order metal-insulator transition. A global instability of the magnetically saturated solution precedes the local ones and is caused by collective fluctuations due to poles in electron-hole vertex functions.Comment: REVTeX 4 pages, 3 PS figure

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R

    Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions

    Full text link
    An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the N\'eel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon as n<1n<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page

    Quantum critical point in a periodic Anderson model

    Full text link
    We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value VcV_c of the hybridization (or above a critical interaction UcU_c) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above VcV_c (below UcU_c) it behaves like a metal in both approximations. These predictions are compared with the density of states of the dd- and ff-bands calculated from Quantum Monte Carlo and NRG calculations. Our conclusion is that the half-filled symmetric PAM contains a {\em metal-semimetal transition}, not a metal-insulator transition as has been suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text and in the figure captions from the first version. More references added. Accepted for publication in Physical Review

    Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age

    Get PDF
    The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG+ memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27+ IgG+ memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27-IgG+ memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses

    Phase Diagram of One-Dimensional Extended Hubbard Model at Half Filling

    Get PDF
    We reexamine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with on-site and nearest-neighbor repulsive interactions. We calculate second-order corrections to coupling constants in the g-ology to show that the bond-charge-density-wave (BCDW) phase exists for weak couplings in between the charge density wave (CDW) and spin density wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons destabilizes the BCDW state and gives rise to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line.Comment: 4 pages, 3 figure

    Efficient photocatalytic degradation of Malachite Green in seawater by the hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D) reduced graphene oxide(RGO)/Ni foam

    Get PDF
    A hybrid of ZnO nanorods grown onto three-dimensional (3D) reduced graphene oxide (RGO)@Ni foam (ZnO/RGO@NF) is synthesized by a facile hydrothermal method. The as-prepared hybrid material is physically characterized by SEM, XRD, Raman, and X-ray photoelectron spectroscopy (XPS).When the as-prepared 3D hybrid is investigated as a photocatalyst, it demonstrates significant high photocatalytic activity for the degradation of methylene blue (MB), rhodamine (RhB), and mixed MB/RhB as organic dye pollutants. In addition, the practical application and the durability of the as-prepared catalyst to degradation of malachite green (MG) in seawater are firstly assessed in a continuous flow system. The catalyst shows a high degradation efficiency and stable photocatalytic activity for 5 h continuous operation, which should be a promising catalyst for the degradation of organic dyes in seawater

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an effective Hamiltonian for the spin degrees of freedom in the strong-coupling charge-ordered regime which maps the system onto a frustrated spin chain. The opening of a spin gap is thus connected with spontaneous dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new results added (metallic phase at small U and V

    Quantum critical point in a periodic Anderson model

    Get PDF
    We investigate the symmetric periodic Anderson model ͑PAM͒ on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller&apos;s variational method and the Hubbard-III approximation ͑which corresponds to an exact solution of the appropriate Falicov-Kimball model in infinite dimensions͒ we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value V c of the hybridization ͑or above a critical interaction U c ) the system is an insulator in Gutzwiller&apos;s and a semimetal in Hubbard&apos;s approach, whereas above V c ͑below U c ) it behaves like a metal in both approximations. These predictions are compared with the density of states of the d and f bands calculated from quantum Monte Carlo and numerical renormalization group calculations. Our conclusion is that the half-filled symmetric PAM contains a metal-semimetal transition, not a metal-insulator transition as has been suggested previously
    corecore