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Quantum critical point in a periodic Anderson model
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We investigate the symmetric periodic Anderson maod&M) on a three-dimensional cubic lattice with
nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller’s variational method and the
Hubbard-IIl approximatiorfwhich corresponds to an exact solution of the appropriate Falicov-Kimball model
in infinite dimensionswe demonstrate the existence of a quantum critical point at zero temperature. Below a
critical valueV, of the hybridization(or above a critical interactiod ;) the system is amsulatorin Gutzwill-
er's and asemimetain Hubbard’s approach, whereas abdwg (below U.) it behaves like a metal in both
approximations. These predictions are compared with the density of statesdodiiié bands calculated from
guantum Monte Carlo and numerical renormalization group calculations. Our conclusion is that the half-filled
symmetric PAM contains anetal-semimetal transitigmot a metal-insulator transition as has been suggested

previously.
DOI: 10.1103/PhysRevB.64.195123 PACS nuni®er71.10.Fd, 71.2%a
I. INTRODUCTION model, with a hybridization strength that vanishes at the

Fermi surface of the conduction electrons. We also present

Heavy-fermion systems, whose properties are determinetsults from three-dimensional QMC calculations in support
by nearly localized, strongly correlatéalectrons hybridiz-  of the existence of a quantum critical point.
ing with thed electrons of the conduction band, have been of The grand canonical Hamiltonian describing the two-band
considerable interest in recent yearEhe appropriate theo- Periodic Anderson model for hybridizetiandf electrons is
retical description of heavy-fermion systems is believed to
be_the periodic Andgrson m_od(sﬂ’AM). Among other prop- H=, edf de,+ > Vildl firo+fl de,)
erties of heavy fermions, this model explains the Kondo ef- ko ko
fect, i.e., the quenching of magnetic moments of correlated 1 1
electrons by conduction e_IectroﬁRecently, using quantum + UE (ni”_ _) ( Nif — _) +E €Nity
Monte Carlo(QMC) techniques, Huscroft and co-workéfs . 2 2] %
studied a periodic Anderson model with the dispersion of the
hybridization proportional to that of the conduction elec- _Mz (Nitg+ Nigy) - (1)
trons. Their study demonstrates that, as the temperature is io

lowered, the spin-singlet correlation function of the conduc-Here dlo(fla') and d,(f,,) are the fermionic operators

tion electrons develops a sharp structure near a critical Valuv%hich create and destroy ti (f-) band electrons of mo-

of the hybridization. This indicates a very rapid cross over tumk and soi dn. —f1 £ is th b
between a Kondo regime and a regime where the correlatgd €MUMK and spino, andnig, = T, is 1S the NUMber opera-
r for thef electrons of spirr at sitei. FurthermoreV, is

electrons have unquenched moments. The nature of th o
d the momentum-dependent hybridization term betwieand

crossover was also addressed by Held and Bulkho del llowi f d ider the di
showed that the periodic Anderson modeider certain as- 9 €léctrons. Following Refs. 3 and 4, we consider the disper-

sumptionscontains a transition equivalent to the Mott- sion of the_d band and_ the mixing ternv, to be ‘h?t of
Hubbard metal-insulator transition in the Hubbard mddel. "€@rest-neighbor hopping on a three-dimensional simple cu-

Since it is clear already from Ref. 5 that one of the assumpbic lattice (with unit lattice constantwhereas thd band is

tions (the strict separation of high- and low-energy scaies taken to be dispersionless:
at best only approximately fulfilled, further analytical and
numerical studies of this transition in the PAM are clearly
called for. _

In this paper we study the nature of this Mott-Hubbard- Vie= —2V[ cosky + cosky + cosk,], ©
like transition analytically, using both Gutzwiller’s varia-
tional method® and the Hubbard-Ill approximatichWe
demonstrate that at half-filling there is a quantum criticalHeret andV are the hopping matrix elements betweendhe
point as a function of the hybridization strength which sepad and f-d bands, respectively. In this paper we study the
rates the Kondo regime from a phase, in which ¢thandf = symmetric PAM in which the chemical potentialis=0 and
bands araeveakly coupledin the Hubbard-1Il approximation  (n¢)=(ng)=1.
or evencompletely decoupledin Gutzwiller’s approach As pointed out also in Refs. 3 and 4 there are good rea-
The disappearance of the Kondo peak beyond the quantusons for replacing the usuaiomentum-independehybrid-
critical point is intimately connected to our choice of the ization, V=V, by the momentunttependentybridization

€= — 2t[ cosk,+ cosk, + cosk,], 2

Ef:O.
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(3). It follows from elementary symmetry arguments that thethe metal-insulator transition in the PAM.

f andd orbitals are essentially orthogonal on the same site. To study the ground-state properties of the half-filled
The orthogonality of andd orbitals on the same site implies PAM, Eq. (1), within the Gutzwiller approach, we follow the
that the hybridization is predominantly built up from nearest-variational procedure of Rice and Ueti#:'! These authors
and further-neighbor contributions. Our choi@, which as- considered the PAM with on-sitdrather than nearest-
sumes only nearest-neighbor contributions to the hybridizaneighboy hybridization. The central aspect of the Rice-Ueda
tion, reflects this fact in the simplest possible manner. Asapproach is the suppression of doubly occugisthtes. The
shown below, this momentum dependence of the hybridizaGutzwiller-correlated wave functiohy¢) is for the case of
tion has important consequences, in particular for physicalhe PAM defined as

properties beyond the quantum critical point.

This paper is organized as follows. First, in Sec. II, we | ) =Pl4o), 4
introduce our two main methods for investigating the PAM,
namely, Gutzwiller’s variational method and the Hubbard-IlI
approximation. Our variational results for the symmetric
PAM are presented in Sec. Ill; our main finding is that the
Gutzwiller approach predicts a Brinkman-Rice-type metal- A
insulator transition. Next, in Sec. IV, we study the PAM in F’=9D=H [1—(1—9)5i]- (5)
the Hubbard-Ill approximation, which is equivalent to the i
exact solution of a Falicov-Kimball model in infinite dimen- A ) ]
sions. The Hubbard-Ill solution displays rich behavior as alh€ operatorD=Z;ninj; in Eq. (5) is the double-
function of the on-site interactiod, including a resonance at °ccupancy operator for theelectrons and is a variational
the Fermi level for weak coupling, a metal-semimetal transifarameter. Fog=0, the operatoi® projects all the states
tion at an intermediate-coupling quantum critical point, andonto the subspace without doubly occupfesites, whereas
weakly coupledd andf bands at strong coupling. We then 9=1 corresponds to the uncorrelated state. In gergehals
compare the results from the Gutzwiller and Hubbard-I1 ap-to be determined by minimizing the total energy of the sys-
proaches to QMC simulations of the PAM on a three-tém in the correlated state. _ .
dimensional lattice and also to infinite-dimensional QMC re- For the symmetric PAM, which is the case of interest in
sults and to calculations based on the numericafhis paper, the Gutzwiller correlat®¥is treated by renormal-
renormalization grougNRG; see Sec. ) Finally, in Secs. izing all hopping processes by a Gutzwiller factg¢d),

VI and VII, respectively, we discuss and summarize our rewhered= D/ is the fraction of doubly occupiefisites and
sults. N is the total number of lattice sites. This approximation,
which is alternatively referred to as the “Gutzwiller approxi-
mation” or as “semiclassical counting,” becomesact” (at
least within the Gutzwiller variational approach, not for the
Traditionally, in particular in the context of the Hubbard PAM Hamiltonian itself in the limit of high spatial dimen-
model® there are two famous approaches for investigatingsions d=x).
metal-insulator transitions, namely, the variational approach The central element in Hubbard’s Green-function decou-
pioneered by Gutzwillérand Brinkman and Rieand the  pling scheme is the so-called “alloy analogy,” in which it is
Green function decoupling scheme developed by Hubbardassumed that the down spins hop while the up spins are
Both of these approaches are clearly approximate in naturénmobile and vice vers& The Hubbard-Ill approximation,
Gutzwiller's method predicts the formation of an ever nar-like the Gutzwiller approach, can be understood as the exact
rower quasiparticle peak, accompanied by a divergence dfolution of a simplified problem in high spatial dimensions.
the effective mass, as the on-site interactibapproaches a In the context of the PAM, the mobile nature of one spin
critical value UcGUtZ from below. For U>UCG“tZ, the  species(say thef  sping, interacting with an “alloy” of
Gutzwiller method leads to unphysical results, such as thémmobile electrons of opposite spihere thef; sping, can
suppression of all hopping processes and all double occupahée described by the following Hamiltonian:
cies. This method, therefore, is more realistic at weak than at

where |#,) is the wave function for the uncorrelatedl (
=0) ground state at half-filing, ané is the Gutzwiller cor-
relator, defined as

IIl. METHODS AND MODELS

strong coupling. Hubbard’'s approximation, on the other , + + + 1
hand, is generally considered to be more realistic at stron __t(%g di‘fdj‘f_v% (d‘lf”Jrfiid”HUzi (n‘”_ 5)
coupling. At weak coupling it predicts a steady decrease of

the number of charge carriers at the Fermi level; however, 1

this mechanism is implemented in such a way that Fermi- (n”i_i +§ Efni“f—“% (Nito+ Nidg)-

liquid properties are violated. At strong coupling Hubbard’s

method predicts band splitting, i.e., the formation of a lowerln this simplified model, the; electrons form an alloy of
and an upper Hubbard band. Combination of both methodignmobile spins, since their hybridization with the band

(the Gutzwiller method atveakand Hubbard's approxima- vanishes. As a consequence, theelectrons are completely
tion atstrongcoupling has yielded valuable information on decoupled from the rest of the system and can be integrated
the metal-insulator transition in the Hubbard model. Here weout. The creatior(annihilation operators for the remaining
combine both methods in order to shed light on the nature ofi; electrons will simply be denoted Wy (d;) below. Since
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we consider the symmetric PAMe(=0) at half-filling (u -
=0), the last two terms in the Hamiltonian drop out, and we Hen= kE €k, At kE Vidio fiot flodie),  (7)
are left with 7 7

with the renormalized hybridization

1 - —
H= —t% d?dj—v% (dffj + i)+ U2 ( Nif — 5) Vi= Va(d) V.
. Here the renormalization factay(d) takes the forntf**
X Ny — = — —
(nlfl 2) (6) q=8d(1—2d)

andd=D/N\ is the fraction of doubly occupiefisites. The
ground-state enerdy, is now obtained from the expectation
value ofH.g,

This model is very similar to the spinless two-band Falicov-
Kimball model, for which the Hubbard-I1l approximatidim

the framework of the Hubbard moddlecomes exact in the
limit d—oo. Analogously, the appropriate Green-function de- B —
coupling (“alloy analogy”) for the PAM becomes exact in Eq=(olHerl 0}/ N+ Ud—U/4.

the simplified model6) in high dimensions. Below, in Sec. The effective Hamiltonian is easily diagonalized. For conve-
IV, we solve the modek6) exactly ind=c. In order to  pjence, we set=1, to establish a unit of energy. One then
obtain meaningful results in this limit, the hopping and thefinds two bands, with eigenenergie8.e,, where 9.

hybridization have to be scaled &st/\Z andV=V/\Z, =3(1=\1+4qV?). Note that there is no gap between the
respectively, wher& denotes the number of nearest neigh-two bands and that both bands contribute to the ground-state
bors of each lattice site. energy. This is in marked contrast to the results for on-site

Part of the Hubbard-I1l approximation is the choice of the hybridization!®*! The result for the ground-state energy is
lattice. Hubbard started from a semielliptical density of
states(DOS), which corresponds to the Bethe lattice in high Eq= — | o \/1+325(1—23)V2+ Ud—U/4, (8
dimensions. Below, we follow Ref. 9 and solve E) on ,
the Bethe lattice. This choice has several advantages, e.§'here €0=2( <o i€k, /N is the ground-state energy per
that the bandwidth is finite inl=o¢, that the DOS near the lattice site of a completely decoupletiband U=V=0).

band edges resembles the DOS on a simple cubic lattice linimizing the ground-state energy with respecﬁqields
d=3, and that the properties of the DOS can be studied

analytically, since one obtains a relatively simple closed _ 1 U 1+(2V)?
equation for the local Green function. =2 1- TR P EETVTRCI R 9
Essentially the same Hamiltonigh), but now with on- ¢ V1+(2UVIU)

site_hybridization, was considered also by Consiglio andere we introduced the critical valu, of the interaction or,

plified periodic Anderson modeSPAM), a designation that \hich the expectation valu€d) of the double occupancy
we extend also to the case of more gendialparticular  yanishes:

nearest-neighborhybridization. The method of solution in

Ref. 14 was that of Brandt and Miels¢hHere we use an U

alternative methd§ that is much better suited for the calcu- Uc=16V?€g], Ve=1\/ 16 eq’ (10
lation of the DOS on the Bethe lattice. An early application 0

of the Hubbard-11l scheme to the periodic Anderson modelSinced=0, Eq.(9) only applies folU<U, (or V=V,). For
in particular a calculation of the resistivity as a function of u=u,, d=0. Substituting Eq(9) into Eq. (8) gives the
temperature, can be found in Ref. 17. ground-state energy of the system:

_ 2 2
lll. GUTZWILLER’S VARIATIONAL APPROACH Eg=—|eol V[1+(2V)?][1+(2UV/U)?]. (11)

In the Gutzwiller approximation, the kinetic energy termswe note that the variational ground-state energy is indepen-

of the PAM are mapped to an effective Hamiltonian with adent of the hybrldlzatlonEgz_ —Ul4—]e|, for U>_UC_' —
renormalized hybridization. This result was first obtained In Fig. 1 we plot the fraction of doubly occupiéditesd
with the use of semiclassical counting arguments by Ricés & function of the inverseé-f-band hopping parametéf.
and Ued&!* (see also Ref. 18 and then put on a solid The fractiond decreases monotonically witdi and finally
footing by Gebhard® who showed that this so-called vanishes at a critical valu¥,. This implies that, at this
“Gutzwiller approximation” becomes exact in the limit of critical value ofV, everyf site is singly occupied, i.e., that
infinite spatial dimensionality. We recall that Gutzwiller’'s the f electrons are localized.

variational scheme is equivalent to the slave-boson mean- The critical hybridization strengtl/, (or, equivalently,
field theory of Kotliar and Ruckenstéihat T=0. At half-  the critical interactionU,) defines a quantum critical point
filling, the effective Hamiltonian in the Gutzwiller approach which separates two distinct regimes in the model. Wor
become¥ ! >V, (or U<U,), thef electrons hybridize with the elec-
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0.25 — T T ( v(E/I9 )+ v(E/lO_|)
A ] vy(E)=
02 U=6.0 | G [0
Thus one finds that the DOS of the electrons near the
0.15 - 7 transition U=<U,) is strongly enhanced at the Fermi level
o I ] compared to the situation fay>U_, wherevy(E)=v(E).
01 r 1 This result represents an interesting counter example to the
i 1 exhaustion scenario of Nozes?° At low temperatures |
0.05 - 7 <Ty) only the electrons withifTx of the Fermi surface can
I effectively participate in screening the local moments. In a

0 o5 1 18 o concentrated system such as ours, there are more moments to
N screen than conduction-band states available for screening.
In the metallic regime of the conventional PAM, this should
FIG. 1. The fraction of doubly occupied sites is plotted as alead to a depletion of the density of screening states at the
function of 1V, whereV is the hopping between tHeandd bands.  Fermi surfacé!??> However, within the Gutzwiller approxi-
For the criticalV,, given in Eq.(10), the number of doubly occu- mation this “exhaustion physics” is clearly absent, as we see

pied sites vanishes and all the sites become localized. The pararan enhancement of trlbband DOS near the Fermi surface.
eters are chosen to be 1 andU =6, and the average energy of the Similarly thef-band DOS takes the form
system is calculated by summing over all the filled barldg}

=60/4, where the lattice size is taken to bex4x4. With the

' +
above values of the parameters the critical valud/d$ approxi- i(E)= (94 /10D vE/ND_+(|I_|/9.)v(E/D.) _
mately 0.63. G40

trons and their moments are screened. This is the Kondghus’ in the Gutzwiller approximation, the quasiparticle peak

regime. On the other hand, fsf<V, (or U>U,), the two  has width |§_|ecgecds:(1—U/U)=(| €| Te) ¥ which is
bands are decoupled at the Fermi surface, and-¢hectron ~ much larger than the Kondo scalg . Hence, interestingly,
moments are unquenched. Thus theelectrons show a the Kondo temperaturéy near the transition isiot deter-
“metal-insulator transition” from extended<U,) to lo-  mined by the width of the peak in tifeband DOS, but rather

calized U>U,). In contrast, thed electrons at the Fermi Dy the (much smaller binding energyE,, . The physical ex-
level are always extended in both regimes. planation for this is that screening becomes increasingly less

Following Rice and Ued& we introduce thevinding en-  efficient as one approaches the transition, due to the renor-
ergy in the Kondo regime as the singular part of the varia-malization of the hybridization rate§/,k= \/avk—>0 for U
tional ground-state energy, —U,.

Ep(U)=—U/4—| €| —E4(U), IV. HUBBARD-IIl APPROACH

so thatE,(U)=0 for all U>U,. With this definition of the The Hubbard-1l approactalloy analogy is equivalent to
binding energy, it is easy to show thj, is positive for all  the exact solution il=o of the simplified periodic Ander-
U<U; and that, forUTU. (i.e., if the transition is ap- son model, Eq(6) with t=t/\/Z andV=V/\Z. For the cal-
proached from beloyy culation of the DOS on the Bethe lattice, it is most conve-
nient to first map the SPAM to an effective noninteracting
2 Hamiltonian, following the lines of Ref. 16, and then use the

1- U—) (UTU,). renormalized perturbation expans??)lto calculate the DOS.

¢ This method also allows one to conclude immediately that
. the DOS at half-filling isemperature independerds a con-
Near the transition, where the two energy scaigsand|eo| sequence of the noninteracting nature of the effective Hamil-
are well separated, it seems plausible tgican be identi-  (nian. Along the lines of Ref. 16 we find that the Fourier
fied with the Kondo temperatur&,=KkgTg . It is of interest  ansform of the local matrix Green function
to compare our result foF to that of Rice and Ued,who ’

2V?|e
— o|(

1+ 4V?2

found T'K=2|eQ|er’8Vz. While these results cannot be com- (Tdi(n)d(0))  (Td(7)(0))
pared in detail(since Ref. 11 assumes a one-dimensional, Gii(r)=— i : ,
linear dispersion for thel electrong, it is nevertheless clear (71, (1)di (0)) (TF; (7)f{|(0))
that the Kondo temperature in our modelssongly sup- - ) i i

pressedelative to that of Ref. 11 fod=<U,. satisfies a cubic matrix equation

The density of states of the PAM in the Gutzwiller ap-
proach is of interest, too. If we denote the DOS of a decou-
pledd band U=V=0) by »(E), then the DOS for the in-
teracting d electrons in the Gutzwiller approximation is
simply given by with

G(z):%{[l,—(a GOl +[1,-06G0O] 1Y, (12
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— U. A detailed analysis of the cubic matrix equati¢i?)
t V) shows that there is only one physically acceptable solution
ol

01(0) 92(0))
92(0) 93(0)/’

where the matrix elements &(0) are given by

G(O)=<

In spite of the formally simple structure of E(l2), a de-
tailed analysis of the DOS of the andf electrons is rather
involved and will be published elsewheftHere we focus
on the physical content of the Hubbard-III results and com- 91(0)=— J2iR
pare them to results from the Gutzwiller approach and vari- ! "

ous numerical techniques. For convenience wetpul to i

fix the unit of energy; note that this convention differs from 0-(0)= —(R, —R_),
that of the previous section. V2V
A. Density of states at strong interaction i
_ _ 95(0)=— —=(R,—R.),
First we consider the results from the Hubbard-IIl ap- 2V
proximation in the limit of large interactiorl)—oc. In this d
limit almost all the spectral weight of thetelectrons is con- n
tained in a semielliptic band ne&=0:
\/ u? [ u?
1 R.= 1-—= 1——.
va(BE)~ 5—Va4- E2. (13 - gv* 4v*

Similarly, nearly all spectral weight of thé, electrons is ~These results hold only fdg<Ug"=2V?, where the super-
contained in two high and narrow peaks nd&s=+1U,  script “AA’ stands for “alloy analogy.” For allU>UZ" the
whose width is of ordeN?/U while their height is propor- Solution is simply given byg,(0)=—i and g,(0)=gs(0)

. NI o . =0. Note that the Hubbard-lll and Gutzwiller approaches
tional to U/V<. With a redefinition of the energy variable as predict the same dependence Gf on the hybridization:

_ 1\ A2 - X .
A=U(|E|-3zU)/V?, one finds both US* and US"* are simply proportional t&/2.
U Physically these results mean that at weak coupling the
_ A a2 DOS at the Fermi level decreases fairly slowly as the inter-
vil(B) AV2 BA—1-0% actionU is switched on, both for thd and thef | electrons,

provided that the argument of the square root is positive (3

2 2
—8<\<3+8); otherwise, v, (E) vanishes. The pres- vy(0)~ ;( 1- 16\74>

ence of an upper and a lower Hubbard band infthepec- (U10)
trum at first sight suggests the occurrence of a metal- 2 '
insulator transition at some finite value &f. However, Vfl(o)'\“_—z 1-—=
closer inspection shows that there is some smadditional v 8v
H _ 1
spectral weight for thel electrons neak=*3U, while the critical values are approached quite rapidly:
1
2 1 _
va(B)~ oo VoA —1m0% va(0)~ —[1+ JUF = UIV]
. . (UTUSA).

and smalladditional spectral weight for thé, electrons near 1 —
E=0: ! Vfl(O)"“—\/U?A_U/Va

2\/2 For allU=UZ" thef -band DOS at the Fermi level vanishes
ve (E)~ ?EZM— E°. exactly, while thed-band DOS is pinned at the valug(0)
m =1/sr. This clearly demonstrates thH@A marks a quantum

This is a first clear indication that the electrons in the ~Cfitical point, although theatureof the transition cannot be
SPAM do not undergo a metal-insulator transition. Insteaddeduced from an investigation of the DOS only at the Fermi

one finds anetal-semimetal transitiorat arbitrarily largeu, ~ '€Vel. _
thed andf, bands remain weakly hybridized. We add that, at weak coupling, the DOS for both the

andf electrons displays an interesting resonance at the Fermi
level. This resonance is very narrow, 6f(U?), and its
height remains ofO(1) for U—0. The amplitude of the
Exactly at the Fermi levelE=0) an explicit nonpertur- resonance for the electrons is positive, so that tlteband
bative solution can be obtained for all interaction strengthDOS atU=0" is larger than for U=0. In contrast, the

B. Density of states at the Fermi level
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amplitude of the resonance in théand is negative; i.e., the RERERRRRERRRRS RAREERRERERRR

f-band DOS atJ=0" is smallerthan forU=0. 100 g0 . ng'g il
, ” , o5 I - V=08 |
C. Density of states at and beyond the critical point —— V=10
We now consider the shape of the DOS as a function of )
energy, first fol=U2" and then folu>U%* . We focus on = 080 1 1
the energy interval near the Fermi level, since this interval I .
determines the nature of the quantum critical point and vir- 0.25 - ) . 7
tually all physical properties of interest. o R\ AL A e
First we present the result for the DOS exactly at the 0.00 Smrerm=El AL NI
transition, i.e., fortd=U%". In this case one finds that the =75 -850 -25 00 25 50 75
DOS has a sharfcubic-roo} singularity as a function of ©
energy for|E|—0: FIG. 2. Thed-band density of statesy(w), for the 3d PAM via
finite-d QMC simulations for various hybridization¥>V,. From
1 \/§ 1\"° Refs. 3 and 4 we estimate th&,=0.5. The DOS at the Fermi
vy(E)~ P + 5 1+ ? |E|1/3 energy is resonantly enhanced over the noninteracting value, shown
(|E|*>0). as d_ots in the figure. F01<V_C, the Qreer_1 fu_nction is similar to the
3 13 noninteracting Green function, which indicates that thend f
ve (E)~ Py 1+ ? |E|1’3 bands are approximately decoupled in this regima shown.

) N ) _ the previously mentioned enhancement ofdHeand DOS in
Cubic-root critical behavior of the DOS near the Fermi |eve|the Gutzwiller approximation in this regime_ On the other

is well known from the Hubbard-IIl solution for the Hubbard hand, in the regime Wher\é<vc7 the Green function is not

model. Here we find that similar critical behavior occurs alsosjgnificantly different from the noninteracting Green func-
for the SPAM with nearest-neighbor hybridization. tion. This indicates that fov<V,, the d band is weakly

For energies near the Fermi level, one generally finds thagoupled to the band. This result is compatible with both the
the d-band DOS forU>U¢" is metallic while the f -band  Gutzwiller result[that thed band is strictlyV independent
DOS issemimetallicIn particular, one finds that tfe-band  for V<V, i.e., v4(E)=v(E)] and the Hubbard-IlI result,
DOS contains spectral weight, arbitrarily close to the Fermigq. (13), which holds asymptotically both fdd—o andV
level, 0.

Thef-band DOS was studied in Refs. 3 and 4 with the use
of finite- and infinite-dimensional QMC techniques. The
infinite-dimensional dynamical mean field theo{®MFT)
calculation$ were also done for a strictly paramagnetic state,
Note that the coefficient in front of the semimetalié be-  without antiferromagnetic fluctuations. For small hybridiza-
havior is valid forall U>U%" and, hence, simpljdentical ~ tion V<V,, one finds that théband DOS consists primarily

4v2
vi|(E)~——E? ([E[-0U>UZ").
U

to that calculated in Sec. IV A for largé. of an upper and a lower Hubbard band aroufd + U,
respectively. Only in the DMFT calculatichss there a sign
V. COMPARISON TO QMC AND NRG RESULTS of small spectral weight near the Fermi level. For increasing

V, one finds that the upper and lower Hubbard bands merge.

To obtain a complete picture of our model, we compareBefore the bands mergd/EV,), additional resonant peaks
our analytical results to single-particle spectra obtained frontlevelop, which are characteristic of Kondo singlet formation.
three different numerical techniques; QMC simulations of  After the bands merge/>V,), thef-band DOS in the finite-
the PAM on a three-dimensional latti¢eshere we present dimensional simulation shows some depletion near the Fermi
new results and compare to results from ret&mlcula- level. Since this depletion is absent in the DMFT calcula-
tions), (i) QMC simulations of the PAM on an infinite- tions, this feature is most likely due to short-range antiferro-
dimensional latticé,and (iii) recent results from NRG cal- magnetic fluctuations. Comparing these numerical results to
culations in infinite dimensions. those from the Hubbard-IIl and Gutzwiller approaches, we

We start with the comparison to the three-dimensionabbserve that the merging of the two bands is described by the
QMC-results. In Fig. 2 we plot new results for theband  Hubbard-Ill approach but not by the Gutzwiller approxima-
DOS obtained using the maximum entropy method to anation. The Hubbard-IIl approach also explains the small addi-
lytically continue three-dimensional QMC data calculated atiional spectral weight near the Fermi level in the DMFT
T=0.2. For smallV the presence of upper and lower Hub- calculation. The Gutzwiller approximation cannot explain ei-
bard bands well separated by a gdpcan be seen in the ther the upper and lower Hubbard bands or small spectral
f-band DOS. With increasiny, the weight in the central weight near the Fermi level. Obviously, neither approach can
region is enhanced at the expense of the Hubbard side bandskplain the depletion due to short-range antiferromagnetic

For V larger than the critical hybridizatiow., the DOS fluctuations in the finite-dimensional calculations.
for thed band is greatly enhanced compared to the noninter- We add that, very recently, Held and Bdllperformed
actingd-band DOS(shown in dots This is consistent with  calculations for the paramagnetic ground state of the PAM
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using the numerical renormalization group. These calculasemimetallic low-energy part of the spectrum, and an upper
tions clearly reveal significant additional spectral weight neaHubbard band neaE=+ 3U. This scenario is consistent
the Fermi level fold>U_. The numerical results in Ref. 5 with the results from the high-dimensional QMC simulations
are the clearest evidence to date that the quantum criticaind agrees very well with those of the NRG calculations
point in the PAM corresponds to a metal-semimetal and notliscussed in Sec. V.

to a metal-insulator transition. Interestingly, the authors of In contrast, there will be significant short-range antiferro-
Ref. 5 show analytically that the PAMnder certain assump- magnetic fluctuations in the paramagnetic phase in low spa-
tions contains a transition equivalent to the Mott-Hubbardtial dimensiongcertainly ford=1,2 and to some extent also
metal-insulatortransition in the Hubbard model. However, for d=3). In these dimensions one, therefore, expects deple-
they also point out that one of these assumpti@he strict  tion of thef-band DOS near the Fermi level. This depletion is
separation of high- and low-energy scalés at best only explicitly seen in three-dimensional QMC calculaticifs.
approximately fulfilled folU=U,, especially for larger val- These depletion effects cannot be described in terms of the
ues of the hybridization rate/(= 1). The Hubbard-Ill results paramagnetic Gutzwiller wave function for the PAM, since it
of this paper strongly suggest that the high- and low-energyloes not contain the necessary antiferromagnetic fluctua-
scales in the PAM are in fact never strictly separated, so thaions. The effects of finite dimensionality on the quality of
the transition is from a metal to a semimetal, not an insulatorthe Hubbard-I11 results fotJ > U, is probably not large. One
Physically it seems obvious that for large as a result of the  expects the semimetallic part of the DOS to be somewhat
finite hybridization rate, thé band must have some spectral depleted ind=3 as compared td=c. An interesting ques-
weight near the Fermi level, where the weight of theand  tion that cannot be answered at this stage is whether the
is concentrated. Similarly, the band must have some spec- semimetallic pseudogap changes its functional form due to
tral weight near the upper and lower Hubbard bands of the short-range antiferromagnetic fluctuations and, in particular,
electrons, i.e., nedE=+3U. whether these fluctuations might turn the pseudogap into a
hard gap. Given these uncertainties concerning the influence
of antiferromagnetic fluctuations in finite dimensions, it
seems fair to say that our results are at least consistent with

The two main questions to be discussed are the followingthe three-dimensional QMC data published here and in Refs.
What can be learned from the Gutzwiller and Hubbard-I113 and 4. We do not believe that our results can reasonably be
approximations for the PAM? And what features are missingapplied to one- and two-dimensional systems, since the phys-
in these two analytical approximation schemes? ics in these low dimensions differs too much from that in

As pointed out before, in Sec. Il, one expects Gutzwiller'shigh dimensions, where our approximations are valid.
variational method to be more realistic at weak than at strong In the Gutzwiller and Hubbard-Ill methods studied in this
coupling. This expectation is based on experience with th@aper, only states without broken symmetry were considered.
Hubbard model and on the fact that the Gutzwiller waveThe true ground state of the half-filled symmetric PAM, of
function becomes exact in the weak-coupling limit. For simi-course, may well be antiferromagnetically ordetéd®?’In
lar reasons, Hubbard’s approximation is considered to b#his sense our results are not so much relevant for the ground
more realistic at strong coupling. For example, the Hubbardstate of the PAM, but rather for the paramagnetic phase at
[l approximation violates weak-couplingFermi-liquid) slightly elevated temperature$ £ Ty . Note that the low-
properties and is, therefore, better suited for U, where temperature antiferromagnetic phase can be partially or en-
the DOS of thef electrons displays essentially no low-energytirely suppressed due to frustratiBhwith this proviso, we
spectral weight> Combination of these two approaches believe that the main result of our paper, the absence of
leads to the following physical picture. Kondo screening foV<V, (or U>U,), is robust. In par-

We distinguish high and low spatial dimensions. In highticular, we expect that metal-semimetal transition, predicted
spatial dimensions, short-range antiferromagnetic fluctuaby the Hubbard-1ll approach, actually occurs in the PAM
tions (in particular due to spin-flip processes on nearestwith nearest-neighbor hybridization.
neighbor sitesare small, which is a prerequisite for the va- A comment is in order concerning the critical values of
lidity of the Gutzwiller and Hubbard-Ill approaches. The the interaction in the Gutzwiller and Hubbard-I(falloy
Gutzwiller approach then shows that theand DOS devel- analogy”) approachesUS$"” and U2 . In Secs. Il and IV
ops a quasiparticle peak near the Fermi level if the interacye found thatU S"%= 16V?| &,|/t? and U§A=2V2/t_, where
2g?roL;l/vles; tﬂrnr][ﬁdi to\r/]én-li_gﬁegugs'&irt'glﬁicgﬁﬁ t:?:;?&is €V€lve reinstated factors dfandt=1t/yZ. In order to be able to

’ . ; .’ compare these two results, we calculate the critical value
where the metal turns into a semimetal. The Gutzwiller ap- cutz for the Bethe lattice with coordination nuMGEF o
proach is unable to describe the sidebands in the DOS thé‘{c o i . — '
develop forU<U,. These high-energy features are betterOne readily finds that in this casgo|=8t/37, so that
captured by the Hubbard-1ll approximation which, in turn, is USU?=128v?/(3t). Hence there is a significant discrep-
unable to describe the Fermi-liquid peak. Rd=U_. one  ancy between the twd values:Uf”‘Z/U§A=64/3rrz6.79.
expects the DOS to remain semimetallic, as is seen in thPartly this is due to neglect of “resonance broadening cor-
Hubbard-Ill approach. The Hubbard-IIl results further sug-rections,” which are part of the full Hubbard-1Il approxima-
gest that, at some finite interactidh>U_, the DOS splits tion but are not taken into account in the alloy-analogy
into three parts: a lower Hubbard band nd&=—3U, a  approach? For the Hubbard model, the resonance broaden-

VI. DISCUSSION
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ing corrections are knowrto enhanceU2* by a factor of  the coupling scales to the strong-coupling=(=) fixed

J3, so that one then finds a ratity®'%(y3uA*)  point. Adjacent to this fixed point, only energy scales and

—32/3,/37=1.96. Hence the Gutzwiller prediction fak, in momenta near the Fermi surface are important. For the stan-
.96. A

the Hubbard model is significantly larger than the full dard PAM the hybridization is constant, and one finds the
Hubbard-Ill result. In the PAM the discrepancy is even usual Kondo effect. In contrast, the most salient feature of

larger. Even if resonance broadening corrections are takeii€ model we study is that thed hybridizationvanishesat
into account through aad hocfactor of v/3, USUZ is still the Fermi surface of the half filled noninteracting model, as
' c

can be seen from Eq$2) and (3). The corresponding ex-
larger than3U2* by a factor of nearly 4. In order to deter- ; . ,
. ) . change coupling also vanishes on the Fermi surface and
mine which of the three predictionsS"?, U~ | and3UL* g pind

) , therefore cannot be rescaled to the strong-coupling limit.
is best, we compare with results from recent NRG calculay, s the absence of the Kondo effect in our model at small
tions for the ground state of the PAM in high dimensiBns. \a,es ofv/t is fully consistent with the usual renormaliza-
E.g., for t=V=1 one finds thaU*"=4. In conclusion, tion group arguments.

compared to the NRG valugl2” is too small by a factor of

2 due to neglect of resonance broadening corrections, the
“corrected” value \/3U2" is quite close, and the Gutzwiller
predictionUS"? is too large by a factor of=3.395. For the We have studied the half-filled symmetric periodic Ander-
PAM, therefore, the full Hubbard-Ill approximation leads to son model with anf-d hybridization proportional to the
a much more accurate prediction for the critical interactiond-band dispersion, using Gutzwiller’s variational wave func-

VIl. SUMMARY

than the Gutzwiller approach. tion and Hubbard’s alloy-analogy approach. Both methods
We now comment on the influence of small deviationsdemonstrate the occurrence of a quantum phase transition for
from the strict nearest-neighbor hybridizatiorVy = a critical valueV, of the f-d hybridization rate or, equiva-

—2Vv=9_  cos), which we considered throughout in this lently, for a critical interaction strengtb .. For V>V, (or
paper. As an example, we consider combinations of this “exU<U.) the system is a metal. F&f<V, (or U=U,) the
tendeds-wave” form and a local“ s-wave”) hybridization, system behaves as an insulator in Gutzwiller's approxima-
Vi=—V,, or a “p-wave” form, VE= —2Vp2|":15in(k|). In tion and as a semimetal in the Hubbard-IIl approach. Based
the Gutzwiller approximation, one readily finds that there ison the results of these two approximate methods, we predict
now a gap at the Fermi surface and that the renormalizatiothe occurrence of a similar quantum phase transition in the
factorq is nowfinite for all U>0. For instance, one finds for €xact solution of the PAM with nearest-neighbor hybridiza-
a mixture of an extendegiwave and as-wave tion. A number of the properties of this transition, such as a
strong suppression of the Kondo temperature on the metallic

t2 U—-U.V) side, were also predicted. Most importantly, we conclude
o« ?ex T (U=Uy). (14)  from our results that theatureof the transition in the exact
s v(0)Vs solution of the PAM will be that of anetal-semimetahot a

For a mixture of an extendeswave and @-wave, the factor metal-insulatot transition. These analytical results are com-
VZin the exponent is replaced by the average\df)¢ over ~ pared with the DOS obtained from QMC simulations and
the noninteracting Fermi surface of theslectrons. Strictly NRG results for thel andf bands. We find good agreement
speaking, Eq(14) implies that the quantum critical point between our scenario and QMC or NRG results in high spa-
(QCP, which occurs folV¢=V,=0, is unstable with respect tial dimensions §=«), while our results are at least consis-
to smalls- or p-wave perturbations. However, E(l4) also  tent with the QMC calculations published here and in Refs. 3
shows that the QCP &1.(V)=16V?|o|/t? is replaced by a and 4 for the three-dimensional PAM.

sharp crossover to a state with very heavy quasiparticles.
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