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Quantum critical point in a periodic Anderson model
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We investigate the symmetric periodic Anderson model~PAM! on a three-dimensional cubic lattice with
nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller’s variational method and the
Hubbard-III approximation~which corresponds to an exact solution of the appropriate Falicov-Kimball model
in infinite dimensions! we demonstrate the existence of a quantum critical point at zero temperature. Below a
critical valueVc of the hybridization~or above a critical interactionUc) the system is aninsulator in Gutzwill-
er’s and asemimetalin Hubbard’s approach, whereas aboveVc ~below Uc) it behaves like a metal in both
approximations. These predictions are compared with the density of states of thed andf bands calculated from
quantum Monte Carlo and numerical renormalization group calculations. Our conclusion is that the half-filled
symmetric PAM contains ametal-semimetal transition, not a metal-insulator transition as has been suggested
previously.
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I. INTRODUCTION

Heavy-fermion systems, whose properties are determ
by nearly localized, strongly correlatedf electrons hybridiz-
ing with thed electrons of the conduction band, have been
considerable interest in recent years.1 The appropriate theo
retical description of heavy-fermion systems is believed
be the periodic Anderson model~PAM!. Among other prop-
erties of heavy fermions, this model explains the Kondo
fect, i.e., the quenching of magnetic moments of correla
electrons by conduction electrons.2 Recently, using quantum
Monte Carlo~QMC! techniques, Huscroft and co-workers3,4

studied a periodic Anderson model with the dispersion of
hybridization proportional to that of the conduction ele
trons. Their study demonstrates that, as the temperatu
lowered, the spin-singlet correlation function of the condu
tion electrons develops a sharp structure near a critical v
of the hybridization. This indicates a very rapid cross ov
between a Kondo regime and a regime where the correl
electrons have unquenched moments. The nature of
crossover was also addressed by Held and Bulla,5 who
showed that the periodic Anderson modelunder certain as-
sumptions contains a transition equivalent to the Mo
Hubbard metal-insulator transition in the Hubbard mode6

Since it is clear already from Ref. 5 that one of the assum
tions ~the strict separation of high- and low-energy scales! is
at best only approximately fulfilled, further analytical an
numerical studies of this transition in the PAM are clea
called for.

In this paper we study the nature of this Mott-Hubba
like transition analytically, using both Gutzwiller’s varia
tional method7,8 and the Hubbard-III approximation.9 We
demonstrate that at half-filling there is a quantum criti
point as a function of the hybridization strength which se
rates the Kondo regime from a phase, in which thed and f
bands areweakly coupled~in the Hubbard-III approximation!
or even completely decoupled~in Gutzwiller’s approach!.
The disappearance of the Kondo peak beyond the quan
critical point is intimately connected to our choice of th
0163-1829/2001/64~19!/195123~9!/$20.00 64 1951
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model, with a hybridization strength that vanishes at
Fermi surface of the conduction electrons. We also pres
results from three-dimensional QMC calculations in supp
of the existence of a quantum critical point.

The grand canonical Hamiltonian describing the two-ba
periodic Anderson model for hybridizedd and f electrons is

H5(
ks

ekdks
† dks1(

ks
Vk~dks

† f ks1 f ks
† dks!

1U(
i

S ni f↑2
1

2D S ni f↓2
1

2D1(
is

e fni f s

2m(
is

~ni f s1nids!. ~1!

Here dks
† ( f ks

† ) and dks( f ks) are the fermionic operator
which create and destroy thed- ( f -! band electrons of mo-
mentumk and spins, andni f s5 f is

† f is is the number opera
tor for the f electrons of spins at sitei. Furthermore,Vk is
the momentum-dependent hybridization term betweenf and
d electrons. Following Refs. 3 and 4, we consider the disp
sion of thed band and the mixing termVk to be that of
nearest-neighbor hopping on a three-dimensional simple
bic lattice ~with unit lattice constant! whereas thef band is
taken to be dispersionless:

ek522t@coskx1cosky1coskz#, ~2!

Vk522V@coskx1cosky1coskz#, ~3!

e f50.

Heret andV are the hopping matrix elements between thed-
d and f -d bands, respectively. In this paper we study t
symmetric PAM in which the chemical potential ism50 and
^nf&5^nd&51.

As pointed out also in Refs. 3 and 4 there are good r
sons for replacing the usualmomentum-independenthybrid-
ization, Vk5V, by the momentum-dependenthybridization
©2001 The American Physical Society23-1
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~3!. It follows from elementary symmetry arguments that t
f and d orbitals are essentially orthogonal on the same s
The orthogonality off andd orbitals on the same site implie
that the hybridization is predominantly built up from neare
and further-neighbor contributions. Our choice~3!, which as-
sumes only nearest-neighbor contributions to the hybrid
tion, reflects this fact in the simplest possible manner.
shown below, this momentum dependence of the hybrid
tion has important consequences, in particular for phys
properties beyond the quantum critical point.

This paper is organized as follows. First, in Sec. II, w
introduce our two main methods for investigating the PA
namely, Gutzwiller’s variational method and the Hubbard-
approximation. Our variational results for the symmet
PAM are presented in Sec. III; our main finding is that t
Gutzwiller approach predicts a Brinkman-Rice-type met
insulator transition. Next, in Sec. IV, we study the PAM
the Hubbard-III approximation, which is equivalent to th
exact solution of a Falicov-Kimball model in infinite dimen
sions. The Hubbard-III solution displays rich behavior as
function of the on-site interactionU, including a resonance a
the Fermi level for weak coupling, a metal-semimetal tran
tion at an intermediate-coupling quantum critical point, a
weakly coupledd and f bands at strong coupling. We the
compare the results from the Gutzwiller and Hubbard-III a
proaches to QMC simulations of the PAM on a thre
dimensional lattice and also to infinite-dimensional QMC
sults and to calculations based on the numer
renormalization group~NRG; see Sec. V!. Finally, in Secs.
VI and VII, respectively, we discuss and summarize our
sults.

II. METHODS AND MODELS

Traditionally, in particular in the context of the Hubba
model,6 there are two famous approaches for investigat
metal-insulator transitions, namely, the variational appro
pioneered by Gutzwiller7 and Brinkman and Rice8 and the
Green function decoupling scheme developed by Hubba9

Both of these approaches are clearly approximate in nat
Gutzwiller’s method predicts the formation of an ever n
rower quasiparticle peak, accompanied by a divergence
the effective mass, as the on-site interactionU approaches a
critical value Uc

Gutz from below. For U.Uc
Gutz, the

Gutzwiller method leads to unphysical results, such as
suppression of all hopping processes and all double occu
cies. This method, therefore, is more realistic at weak tha
strong coupling. Hubbard’s approximation, on the oth
hand, is generally considered to be more realistic at str
coupling. At weak coupling it predicts a steady decrease
the number of charge carriers at the Fermi level; howe
this mechanism is implemented in such a way that Fer
liquid properties are violated. At strong coupling Hubbard
method predicts band splitting, i.e., the formation of a low
and an upper Hubbard band. Combination of both meth
~the Gutzwiller method atweakand Hubbard’s approxima
tion at strongcoupling! has yielded valuable information o
the metal-insulator transition in the Hubbard model. Here
combine both methods in order to shed light on the natur
19512
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the metal-insulator transition in the PAM.
To study the ground-state properties of the half-fill

PAM, Eq. ~1!, within the Gutzwiller approach, we follow the
variational procedure of Rice and Ueda.7,10,11These authors
considered the PAM with on-site~rather than nearest
neighbor! hybridization. The central aspect of the Rice-Ue
approach is the suppression of doubly occupiedf states. The
Gutzwiller-correlated wave functionucG& is for the case of
the PAM defined as

ucG&5Puc0&, ~4!

where uc0& is the wave function for the uncorrelated (U
50) ground state at half-filling, andP is the Gutzwiller cor-
relator, defined as

P5gD̂5)
i

@12~12g!D̂ i#. ~5!

The operator D̂5( ini f↑ni f↓ in Eq. ~5! is the double-
occupancy operator for thef electrons andg is a variational
parameter. Forg50, the operatorP projects all the states
onto the subspace without doubly occupiedf sites, whereas
g51 corresponds to the uncorrelated state. In generalg has
to be determined by minimizing the total energy of the s
tem in the correlated state.

For the symmetric PAM, which is the case of interest
this paper, the Gutzwiller correlatorP is treated by renormal-
izing all hopping processes by a Gutzwiller factorq(d̄),
whered̄5D/N is the fraction of doubly occupiedf sites and
N is the total number of lattice sites. This approximatio
which is alternatively referred to as the ‘‘Gutzwiller approx
mation’’ or as ‘‘semiclassical counting,’’ becomesexact12 ~at
least within the Gutzwiller variational approach, not for th
PAM Hamiltonian itself! in the limit of high spatial dimen-
sions (d5`).

The central element in Hubbard’s Green-function dec
pling scheme is the so-called ‘‘alloy analogy,’’ in which it i
assumed that the down spins hop while the up spins
immobile and vice versa.13 The Hubbard-III approximation,
like the Gutzwiller approach, can be understood as the e
solution of a simplified problem in high spatial dimension
In the context of the PAM, the mobile nature of one sp
species~say the f ↓ spins!, interacting with an ‘‘alloy’’ of
immobile electrons of opposite spin~here thef ↑ spins!, can
be described by the following Hamiltonian:

H52t (
( ij )s

dis
† djs2V(

( ij )
~di↓

† f j↓1 f i↓
† dj↓!1U(

i
S ni f↑2

1

2D
3S ni f↓2

1

2D1(
is

e fni f s2m(
is

~ni f s1nids!.

In this simplified model, thef ↑ electrons form an alloy of
immobile spins, since their hybridization with thed band
vanishes. As a consequence, thed↑ electrons are completely
decoupled from the rest of the system and can be integr
out. The creation~annihilation! operators for the remaining
d↓ electrons will simply be denoted bydi

† (di) below. Since
3-2
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QUANTUM CRITICAL POINT IN A PERIODIC . . . PHYSICAL REVIEW B 64 195123
we consider the symmetric PAM (e f50) at half-filling (m
50), the last two terms in the Hamiltonian drop out, and
are left with

H52t(
( ij )

di
†dj2V(

( ij )
~di

†f j↓1 f i↓
† dj !1U(

i
S ni f↑2

1

2D
3S ni f↓2

1

2D . ~6!

This model is very similar to the spinless two-band Falico
Kimball model, for which the Hubbard-III approximation~in
the framework of the Hubbard model! becomes exact in the
limit d→`. Analogously, the appropriate Green-function d
coupling ~‘‘alloy analogy’’! for the PAM becomes exact in
the simplified model~6! in high dimensions. Below, in Sec
IV, we solve the model~6! exactly in d5`. In order to
obtain meaningful results in this limit, the hopping and t
hybridization have to be scaled ast5 t̄ /AZ and V5V̄/AZ,
respectively, whereZ denotes the number of nearest neig
bors of each lattice site.

Part of the Hubbard-III approximation is the choice of t
lattice. Hubbard9 started from a semielliptical density o
states~DOS!, which corresponds to the Bethe lattice in hig
dimensions. Below, we follow Ref. 9 and solve Eq.~6! on
the Bethe lattice. This choice has several advantages,
that the bandwidth is finite ind5`, that the DOS near the
band edges resembles the DOS on a simple cubic lattic
d53, and that the properties of the DOS can be stud
analytically, since one obtains a relatively simple clos
equation for the local Green function.

Essentially the same Hamiltonian~6!, but now with on-
site hybridization, was considered also by Consiglio a
Gusmão.14 These authors referred to the model as the s
plified periodic Anderson model~SPAM!, a designation tha
we extend also to the case of more general~in particular
nearest-neighbor! hybridization. The method of solution in
Ref. 14 was that of Brandt and Mielsch.15 Here we use an
alternative method16 that is much better suited for the calc
lation of the DOS on the Bethe lattice. An early applicati
of the Hubbard-III scheme to the periodic Anderson mod
in particular a calculation of the resistivity as a function
temperature, can be found in Ref. 17.

III. GUTZWILLER’S VARIATIONAL APPROACH

In the Gutzwiller approximation, the kinetic energy term
of the PAM are mapped to an effective Hamiltonian with
renormalized hybridization. This result was first obtain
with the use of semiclassical counting arguments by R
and Ueda10,11 ~see also Ref. 18!, and then put on a solid
footing by Gebhard,12 who showed that this so-calle
‘‘Gutzwiller approximation’’ becomes exact in the limit o
infinite spatial dimensionality. We recall that Gutzwiller
variational scheme is equivalent to the slave-boson me
field theory of Kotliar and Ruckenstein19 at T50. At half-
filling, the effective Hamiltonian in the Gutzwiller approac
becomes10,11
19512
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Heff5(
ks

ekdks
† dks1(

ks
Ṽk~dks

† f ks1 f ks
† dks!, ~7!

with the renormalized hybridization

Ṽk5Aq~ d̄!Vk .

Here the renormalization factorq(d̄) takes the form10,11

q58d̄~122d̄!

and d̄5D/N is the fraction of doubly occupiedf sites. The
ground-state energyEg is now obtained from the expectatio
value ofHeff ,

Eg5^c0uHeffuc0&/N1Ud̄2U/4.

The effective Hamiltonian is easily diagonalized. For conv
nience, we sett51, to establish a unit of energy. One the
finds two bands, with eigenenergiesq6ek , where q6

[ 1
2 (16A114qV2). Note that there is no gap between th

two bands and that both bands contribute to the ground-s
energy. This is in marked contrast to the results for on-s
hybridization.10,11 The result for the ground-state energy is

Eg52ue0uA1132d̄~122d̄!V21Ud̄2U/4, ~8!

where e05($ek,0,s%eks /N is the ground-state energy pe

lattice site of a completely decoupledd band (U5V50).
Minimizing the ground-state energy with respect tod̄ yields

d̄5
1

4 H 12
U

Uc
A 11~2V!2

11~2UV/Uc!
2J . ~9!

Here we introduced the critical valueUc of the interaction or,
equivalently, a critical valueVc of the hybridization, for
which the expectation value~9! of the double occupancy
vanishes:

Uc516V2ue0u, Vc5A U

16ue0u
. ~10!

Sinced̄>0, Eq.~9! only applies forU<Uc ~or V>Vc). For
U>Uc , d̄50. Substituting Eq.~9! into Eq. ~8! gives the
ground-state energy of the system:

Eg52ue0uA@11~2V!2#@11~2UV/Uc!
2#. ~11!

We note that the variational ground-state energy is indep
dent of the hybridization,Eg52U/42ue0u, for U.Uc .

In Fig. 1 we plot the fraction of doubly occupiedf sitesd̄
as a function of the inversed-f -band hopping parameterV.
The fractiond̄ decreases monotonically withV and finally
vanishes at a critical valueVc . This implies that, at this
critical value ofV, every f site is singly occupied, i.e., tha
the f electrons are localized.

The critical hybridization strengthVc ~or, equivalently,
the critical interactionUc) defines a quantum critical poin
which separates two distinct regimes in the model. ForV
.Vc ~or U,Uc), the f electrons hybridize with thed elec-
3-3
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van DONGEN, MAJUMDAR, HUSCROFT, AND ZHANG PHYSICAL REVIEW B64 195123
trons and their moments are screened. This is the Ko
regime. On the other hand, forV,Vc ~or U.Uc), the two
bands are decoupled at the Fermi surface, and thef-electron
moments are unquenched. Thus thef electrons show a
‘‘metal-insulator transition’’ from extended (U,Uc) to lo-
calized (U.Uc). In contrast, thed electrons at the Ferm
level are always extended in both regimes.

Following Rice and Ueda,11 we introduce thebinding en-
ergy in the Kondo regime as the singular part of the var
tional ground-state energy,

Eb~U ![2U/42ue0u2Eg~U !,

so thatEb(U)50 for all U.Uc . With this definition of the
binding energy, it is easy to show thatEb is positive for all
U,Uc and that, forU↑Uc ~i.e., if the transition is ap-
proached from below!,

Eb;
2V2ue0u

114V2 S 12
U

Uc
D 2

~U↑Uc!.

Near the transition, where the two energy scalesEb andue0u
are well separated, it seems plausible thatEb can be identi-
fied with the Kondo temperature,Eb.kBTK . It is of interest
to compare our result forTK to that of Rice and Ueda,11 who
foundTK52ue0ue2U/8V2

. While these results cannot be com
pared in detail~since Ref. 11 assumes a one-dimension
linear dispersion for thed electrons!, it is nevertheless clea
that the Kondo temperature in our model isstrongly sup-
pressedrelative to that of Ref. 11 forU&Uc .

The density of states of the PAM in the Gutzwiller a
proach is of interest, too. If we denote the DOS of a dec
pled d band (U5V50) by n(E), then the DOS for the in-
teracting d electrons in the Gutzwiller approximation
simply given by

FIG. 1. The fraction of doubly occupied sites is plotted as
function of 1/V, whereV is the hopping between thef andd bands.
For the criticalVc , given in Eq.~10!, the number of doubly occu
pied sites vanishes and all the sites become localized. The pa
eters are chosen to bet51 andU56, and the average energy of th
system is calculated by summing over all the filled bands:ue0u
560/43, where the lattice size is taken to be 43434. With the
above values of the parameters the critical value ofV is approxi-
mately 0.63.
19512
o

-

l,

-

nd~E!5
n~E/q1!1n~E/uq2u!

q11uq2u
.

Thus one finds that the DOS of thed electrons near the
transition (U&Uc) is strongly enhanced at the Fermi lev
compared to the situation forU.Uc , wherend(E)5n(E).
This result represents an interesting counter example to
exhaustion scenario of Nozie`res.20 At low temperatures (T
,TK) only the electrons withinTK of the Fermi surface can
effectively participate in screening the local moments. In
concentrated system such as ours, there are more mome
screen than conduction-band states available for screen
In the metallic regime of the conventional PAM, this shou
lead to a depletion of the density of screening states at
Fermi surface.21,22 However, within the Gutzwiller approxi-
mation this ‘‘exhaustion physics’’ is clearly absent, as we s
an enhancement of thed band DOS near the Fermi surfac

Similarly the f-band DOS takes the form

n f~E!5
~q1 /uq2u!n~E/uq2u!1~ uq2u/q1!n~E/q1!

q11uq2u
.

Thus, in the Gutzwiller approximation, the quasiparticle pe
has width uq2u}q}d̄}(12U/Uc)}(ue0uTK)1/2, which is
much larger than the Kondo scaleTK . Hence, interestingly,
the Kondo temperatureTK near the transition isnot deter-
mined by the width of the peak in thef-band DOS, but rather
by the ~much smaller! binding energyEb . The physical ex-
planation for this is that screening becomes increasingly
efficient as one approaches the transition, due to the re
malization of the hybridization rates,Ṽk5AqVk→0 for U
→Uc .

IV. HUBBARD-III APPROACH

The Hubbard-III approach~alloy analogy! is equivalent to
the exact solution ind5` of the simplified periodic Ander-
son model, Eq.~6! with t5 t̄ /AZ andV5V̄/AZ. For the cal-
culation of the DOS on the Bethe lattice, it is most conv
nient to first map the SPAM to an effective noninteracti
Hamiltonian, following the lines of Ref. 16, and then use t
renormalized perturbation expansion23 to calculate the DOS.
This method also allows one to conclude immediately t
the DOS at half-filling istemperature independent, as a con-
sequence of the noninteracting nature of the effective Ham
tonian. Along the lines of Ref. 16 we find that the Fouri
transform of the local matrix Green function,

Gii~t!52S ^Tdi~t!di
†~0!& ^Tdi~t! f i↓

† ~0!&

^Tf i↓~t!di
†~0!& ^Tf i↓~t! f i↓

† ~0!&
D ,

satisfies a cubic matrix equation

G~z!5
1

2
$@ I 22Q G Q#211@ I 12Q G Q#21%, ~12!

with

m-
3-4
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I 6~z!5S z 0

0 z6
1

2
UD , Q5S t̄ V̄

V̄ 0
D .

In spite of the formally simple structure of Eq.~12!, a de-
tailed analysis of the DOS of thed and f electrons is rather
involved and will be published elsewhere.24 Here we focus
on the physical content of the Hubbard-III results and co
pare them to results from the Gutzwiller approach and v
ous numerical techniques. For convenience we putt̄ 51 to
fix the unit of energy; note that this convention differs fro
that of the previous section.

A. Density of states at strong interaction

First we consider the results from the Hubbard-III a
proximation in the limit of large interaction,U→`. In this
limit almost all the spectral weight of thed electrons is con-
tained in a semielliptic band nearE50:

nd~E!;
1

2p
A42E2. ~13!

Similarly, nearly all spectral weight of thef ↓ electrons is
contained in two high and narrow peaks nearE56 1

2 U,
whose width is of orderV̄2/U while their height is propor-
tional to U/V̄2. With a redefinition of the energy variable a
l5U(uEu2 1

2 U)/V̄2, one finds

n f↓~E!5
U

4pV̄2l
A6l212l2,

provided that the argument of the square root is positive
2A8,l,31A8); otherwise,n f↓(E) vanishes. The pres
ence of an upper and a lower Hubbard band in thef ↓ spec-
trum at first sight suggests the occurrence of a me
insulator transition at some finite value ofU. However,
closer inspection shows that there is some smalladditional
spectral weight for thed electrons nearE56 1

2 U,

nd~E!;
1

2pU
A6l212l2,

and smalladditionalspectral weight for thef ↓ electrons near
E50:

n f↓~E!;
2V̄2

pU2
E2A42E2.

This is a first clear indication that thef ↓ electrons in the
SPAM do not undergo a metal-insulator transition. Inste
one finds ametal-semimetal transition: at arbitrarily largeU,
the d and f ↓ bands remain weakly hybridized.

B. Density of states at the Fermi level

Exactly at the Fermi level (E50) an explicit nonpertur-
bative solution can be obtained for all interaction streng
19512
-
i-

-

3

l-

s

U. A detailed analysis of the cubic matrix equation~12!
shows that there is only one physically acceptable soluti

G~0!5S g1~0! g2~0!

g2~0! g3~0!
D ,

where the matrix elements ofG(0) are given by

g1~0!52A2iR1 ,

g2~0!5
i

A2V̄
~R12R2!,

g3~0!52
i

A2V̄2
~R12R2!,

and

R6[A12
U2

8V̄4
6A12

U2

4V̄4
.

These results hold only forU<Uc
AA52V̄2, where the super-

script ‘‘AA’’ stands for ‘‘alloy analogy.’’ For all U.Uc
AA the

solution is simply given byg1(0)52 i and g2(0)5g3(0)
50. Note that the Hubbard-III and Gutzwiller approach
predict the same dependence ofUc on the hybridization:
both Uc

AA andUc
Gutz are simply proportional toV2.

Physically these results mean that at weak coupling
DOS at the Fermi level decreases fairly slowly as the int
actionU is switched on, both for thed and thef ↓ electrons,

nd~0!;
2

p S 12
U2

16V̄4D
n f↓~0!;

1

pV̄2 S 12
U2

8V̄4D 6 ~U↓0!,

while the critical values are approached quite rapidly:

nd~0!;
1

p
@11AUc

AA2U/V̄#

n f↓~0!;
1

p
AUc

AA2U/V̄3
J ~U↑Uc

AA !.

For all U>Uc
AA the f ↓-band DOS at the Fermi level vanishe

exactly, while thed-band DOS is pinned at the valuend(0)
51/p. This clearly demonstrates thatUc

AA marks a quantum
critical point, although thenatureof the transition cannot be
deduced from an investigation of the DOS only at the Fe
level.

We add that, at weak coupling, the DOS for both thed
andf electrons displays an interesting resonance at the Fe
level. This resonance is very narrow, ofO(U2), and its
height remains ofO(1) for U→0. The amplitude of the
resonance for thed electrons is positive, so that thed band
DOS at U501 is larger than for U50. In contrast, the
3-5
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amplitude of the resonance in thef band is negative; i.e., the
f-band DOS atU501 is smaller than forU50.

C. Density of states at and beyond the critical point

We now consider the shape of the DOS as a function
energy, first forU5Uc

AA and then forU.Uc
AA . We focus on

the energy interval near the Fermi level, since this inter
determines the nature of the quantum critical point and
tually all physical properties of interest.

First we present the result for the DOS exactly at
transition, i.e., forU5Uc

AA . In this case one finds that th
DOS has a sharp~cubic-root! singularity as a function of
energy foruEu→0:

nd~E!;
1

p
1

A3

2 S 11
1

V̄2D 1/3

uEu1/3

n f↓~E!;
A3

2pV̄2 S 11
1

V̄2D 1/3

uEu1/3 6 ~ uEu→0!.

Cubic-root critical behavior of the DOS near the Fermi lev
is well known from the Hubbard-III solution for the Hubbar
model. Here we find that similar critical behavior occurs a
for the SPAM with nearest-neighbor hybridization.

For energies near the Fermi level, one generally finds
the d-band DOS forU.Uc

AA is metallic while the f ↓-band
DOS issemimetallic. In particular, one finds that thef ↓-band
DOS contains spectral weight, arbitrarily close to the Fe
level,

n f↓~E!;
4V̄2

pU2
E2 ~ uEu→0,U.Uc

AA !.

Note that the coefficient in front of the semimetallicE2 be-
havior is valid forall U .Uc

AA and, hence, simplyidentical
to that calculated in Sec. IV A for largeU.

V. COMPARISON TO QMC AND NRG RESULTS

To obtain a complete picture of our model, we compa
our analytical results to single-particle spectra obtained fr
three different numerical techniques:~i! QMC simulations of
the PAM on a three-dimensional lattice~where we presen
new results and compare to results from recent3,4 calcula-
tions!, ~ii ! QMC simulations of the PAM on an infinite
dimensional lattice,4 and ~iii ! recent results from NRG cal
culations in infinite dimensions.5

We start with the comparison to the three-dimensio
QMC-results. In Fig. 2 we plot new results for thed-band
DOS obtained using the maximum entropy method to a
lytically continue three-dimensional QMC data calculated
T50.2. For smallV the presence of upper and lower Hu
bard bands well separated by a gapU can be seen in the
f-band DOS. With increasingV, the weight in the centra
region is enhanced at the expense of the Hubbard side ba

For V larger than the critical hybridizationVc , the DOS
for thed band is greatly enhanced compared to the nonin
actingd-band DOS~shown in dots!. This is consistent with
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the previously mentioned enhancement of thed-band DOS in
the Gutzwiller approximation in this regime. On the oth
hand, in the regime whereV,Vc , the Green function is no
significantly different from the noninteracting Green fun
tion. This indicates that forV,Vc , the d band is weakly
coupled to thef band. This result is compatible with both th
Gutzwiller result@that thed band is strictlyV independent
for V,Vc , i.e., nd(E)5n(E)# and the Hubbard-III result,
Eq. ~13!, which holds asymptotically both forU→` andV
→0.

The f-band DOS was studied in Refs. 3 and 4 with the u
of finite- and infinite-dimensional QMC techniques. Th
infinite-dimensional dynamical mean field theory~DMFT!
calculations4 were also done for a strictly paramagnetic sta
without antiferromagnetic fluctuations. For small hybridiz
tion V,Vc , one finds that thef-band DOS consists primarily
of an upper and a lower Hubbard band aroundE56 1

2 U,
respectively. Only in the DMFT calculations4 is there a sign
of small spectral weight near the Fermi level. For increas
V, one finds that the upper and lower Hubbard bands me
Before the bands merge (V&Vc), additional resonant peak
develop, which are characteristic of Kondo singlet formatio
After the bands merge (V.Vc), thef-band DOS in the finite-
dimensional simulation shows some depletion near the Fe
level. Since this depletion is absent in the DMFT calcu
tions, this feature is most likely due to short-range antifer
magnetic fluctuations. Comparing these numerical result
those from the Hubbard-III and Gutzwiller approaches,
observe that the merging of the two bands is described by
Hubbard-III approach but not by the Gutzwiller approxim
tion. The Hubbard-III approach also explains the small ad
tional spectral weight near the Fermi level in the DMF
calculation. The Gutzwiller approximation cannot explain
ther the upper and lower Hubbard bands or small spec
weight near the Fermi level. Obviously, neither approach
explain the depletion due to short-range antiferromagn
fluctuations in the finite-dimensional calculations.

We add that, very recently, Held and Bulla5 performed
calculations for the paramagnetic ground state of the P

FIG. 2. Thed-band density of states,nd(v), for the 3d PAM via
finite-d QMC simulations for various hybridizations,V.Vc . From
Refs. 3 and 4 we estimate thatVc.0.5. The DOS at the Ferm
energy is resonantly enhanced over the noninteracting value, sh
as dots in the figure. ForV,Vc , the Green function is similar to the
noninteracting Green function, which indicates that thed and f
bands are approximately decoupled in this regime~not shown!.
3-6
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using the numerical renormalization group. These calcu
tions clearly reveal significant additional spectral weight n
the Fermi level forU.Uc . The numerical results in Ref.
are the clearest evidence to date that the quantum cri
point in the PAM corresponds to a metal-semimetal and
to a metal-insulator transition. Interestingly, the authors
Ref. 5 show analytically that the PAMunder certain assump
tions contains a transition equivalent to the Mott-Hubba
metal-insulatortransition in the Hubbard model. Howeve
they also point out that one of these assumptions~the strict
separation of high- and low-energy scales! is at best only
approximately fulfilled forU*Uc , especially for larger val-
ues of the hybridization rate (V*1). The Hubbard-III results
of this paper strongly suggest that the high- and low-ene
scales in the PAM are in fact never strictly separated, so
the transition is from a metal to a semimetal, not an insula
Physically it seems obvious that for largeU, as a result of the
finite hybridization rate, thef band must have some spectr
weight near the Fermi level, where the weight of thed band
is concentrated. Similarly, thed band must have some spe
tral weight near the upper and lower Hubbard bands of thf
electrons, i.e., nearE56 1

2 U.

VI. DISCUSSION

The two main questions to be discussed are the follow
What can be learned from the Gutzwiller and Hubbard
approximations for the PAM? And what features are miss
in these two analytical approximation schemes?

As pointed out before, in Sec. II, one expects Gutzwille
variational method to be more realistic at weak than at str
coupling. This expectation is based on experience with
Hubbard model and on the fact that the Gutzwiller wa
function becomes exact in the weak-coupling limit. For sim
lar reasons, Hubbard’s approximation is considered to
more realistic at strong coupling. For example, the Hubba
III approximation violates weak-coupling~Fermi-liquid!
properties and is, therefore, better suited forU.Uc , where
the DOS of thef electrons displays essentially no low-ener
spectral weight.25 Combination of these two approach
leads to the following physical picture.

We distinguish high and low spatial dimensions. In hi
spatial dimensions, short-range antiferromagnetic fluct
tions ~in particular due to spin-flip processes on neare
neighbor sites! are small, which is a prerequisite for the v
lidity of the Gutzwiller and Hubbard-III approaches. Th
Gutzwiller approach then shows that thef-band DOS devel-
ops a quasiparticle peak near the Fermi level if the inter
tion U is turned on. The quasiparticle peak becomes e
narrower, until it vanishes at the critical interactionUc ,
where the metal turns into a semimetal. The Gutzwiller
proach is unable to describe the sidebands in the DOS
develop forU&Uc . These high-energy features are bet
captured by the Hubbard-III approximation which, in turn,
unable to describe the Fermi-liquid peak. ForU*Uc one
expects the DOS to remain semimetallic, as is seen in
Hubbard-III approach. The Hubbard-III results further su
gest that, at some finite interactionU.Uc , the DOS splits
into three parts: a lower Hubbard band nearE52 1

2 U, a
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semimetallic low-energy part of the spectrum, and an up
Hubbard band nearE51 1

2 U. This scenario is consisten
with the results from the high-dimensional QMC simulatio
and agrees very well with those of the NRG calculatio
discussed in Sec. V.

In contrast, there will be significant short-range antiferr
magnetic fluctuations in the paramagnetic phase in low s
tial dimensions~certainly ford51,2 and to some extent als
for d53). In these dimensions one, therefore, expects de
tion of thef-band DOS near the Fermi level. This depletion
explicitly seen in three-dimensional QMC calculations.3,4

These depletion effects cannot be described in terms of
paramagnetic Gutzwiller wave function for the PAM, since
does not contain the necessary antiferromagnetic fluc
tions. The effects of finite dimensionality on the quality
the Hubbard-III results forU.Uc is probably not large. One
expects the semimetallic part of the DOS to be somew
depleted ind53 as compared tod5`. An interesting ques-
tion that cannot be answered at this stage is whether
semimetallic pseudogap changes its functional form due
short-range antiferromagnetic fluctuations and, in particu
whether these fluctuations might turn the pseudogap in
hard gap. Given these uncertainties concerning the influe
of antiferromagnetic fluctuations in finite dimensions,
seems fair to say that our results are at least consistent
the three-dimensional QMC data published here and in R
3 and 4. We do not believe that our results can reasonabl
applied to one- and two-dimensional systems, since the p
ics in these low dimensions differs too much from that
high dimensions, where our approximations are valid.

In the Gutzwiller and Hubbard-III methods studied in th
paper, only states without broken symmetry were conside
The true ground state of the half-filled symmetric PAM,
course, may well be antiferromagnetically ordered.3,4,26,27In
this sense our results are not so much relevant for the gro
state of the PAM, but rather for the paramagnetic phase
slightly elevated temperatures (T*TNéel). Note that the low-
temperature antiferromagnetic phase can be partially or
tirely suppressed due to frustration.28 With this proviso, we
believe that the main result of our paper, the absence
Kondo screening forV,Vc ~or U.Uc), is robust. In par-
ticular, we expect that metal-semimetal transition, predic
by the Hubbard-III approach, actually occurs in the PA
with nearest-neighbor hybridization.

A comment is in order concerning the critical values
the interaction in the Gutzwiller and Hubbard-III~‘‘alloy
analogy’’! approaches,Uc

Gutz and Uc
AA . In Secs. III and IV

we found thatUc
Gutz516V2ue0u/t2 and Uc

AA52V̄2/ t̄ , where

we reinstated factors oft̄ andt5 t̄ /AZ. In order to be able to
compare these two results, we calculate the critical va
Uc

Gutz for the Bethe lattice with coordination numberZ→`.

One readily finds that in this caseue0u58 t̄ /3p, so that
Uc

Gutz5128V̄2/(3p t̄ ). Hence there is a significant discrep
ancy between the twoUc values:Uc

Gutz/Uc
AA564/3p.6.79.

Partly this is due to neglect of ‘‘resonance broadening c
rections,’’ which are part of the full Hubbard-III approxima
tion but are not taken into account in the alloy-analo
approach.13 For the Hubbard model, the resonance broad
3-7
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ing corrections are known6 to enhanceUc
AA by a factor of

A3, so that one then finds a ratioUc
Gutz/(A3Uc

AA)
532/3A3p.1.96. Hence the Gutzwiller prediction forUc in
the Hubbard model is significantly larger than the f
Hubbard-III result. In the PAM the discrepancy is ev
larger. Even if resonance broadening corrections are ta
into account through anad hoc factor of A3, Uc

Gutz is still
larger thanA3Uc

AA by a factor of nearly 4. In order to dete
mine which of the three predictionsUc

Gutz, Uc
AA , andA3Uc

AA

is best, we compare with results from recent NRG calcu
tions for the ground state of the PAM in high dimension5

E.g., for t̄ 5V̄51 one finds thatUc
PAM.4. In conclusion,

compared to the NRG value,Uc
AA is too small by a factor of

2 due to neglect of resonance broadening corrections,
‘‘corrected’’ valueA3Uc

AA is quite close, and the Gutzwille
predictionUc

Gutz is too large by a factor of.3.395. For the
PAM, therefore, the full Hubbard-III approximation leads
a much more accurate prediction for the critical interact
than the Gutzwiller approach.

We now comment on the influence of small deviatio
from the strict nearest-neighbor hybridization,Vk

es5

22V( l 51
d cos(kl), which we considered throughout in th

paper. As an example, we consider combinations of this ‘‘
tendeds-wave’’ form and a local~‘‘ s-wave’’! hybridization,
Vk

s52Vs, or a ‘‘p-wave’’ form, Vk
p522Vp( l 51

d sin(kl). In
the Gutzwiller approximation, one readily finds that there
now a gap at the Fermi surface and that the renormaliza
factorq is nowfinite for all U.0. For instance, one finds fo
a mixture of an extendeds-wave and as-wave

q}
t2

Vs
2

expF2
U2Uc~V!

16n~0!Vs
2 G ~U*Uc!. ~14!

For a mixture of an extendeds-wave and ap-wave, the factor
Vs

2 in the exponent is replaced by the average of (Vk
p)2 over

the noninteracting Fermi surface of thed electrons. Strictly
speaking, Eq.~14! implies that the quantum critical poin
~QCP!, which occurs forVs5Vp50, is unstable with respec
to smalls- or p-wave perturbations. However, Eq.~14! also
shows that the QCP atUc(V)516V2ue0u/t2 is replaced by a
sharp crossover to a state with very heavy quasipartic
Experimentally this could hardly be distinguished from t
metal-insulator~or metal-semimetal! transition found forVs
5Vp50.

Finally we comment on the difference between the lo
and nearest-neighbor hybridization rates from a renorma
tion group point of view. The Kondo effect is due to th
antiferromagnetic coupling ofd electrons near the Fermi su
face to thef-electron moments. As the system renormaliz
er

in
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the coupling scales to the strong-coupling (J5`) fixed
point. Adjacent to this fixed point, only energy scales a
momenta near the Fermi surface are important. For the s
dard PAM the hybridization is constant, and one finds t
usual Kondo effect. In contrast, the most salient feature
the model we study is that thef -d hybridizationvanishesat
the Fermi surface of the half filled noninteracting model,
can be seen from Eqs.~2! and ~3!. The corresponding ex-
change coupling also vanishes on the Fermi surface
therefore cannot be rescaled to the strong-coupling lim
Thus the absence of the Kondo effect in our model at sm
values ofV/t is fully consistent with the usual renormaliza
tion group arguments.

VII. SUMMARY

We have studied the half-filled symmetric periodic Ande
son model with anf -d hybridization proportional to the
d-band dispersion, using Gutzwiller’s variational wave fun
tion and Hubbard’s alloy-analogy approach. Both metho
demonstrate the occurrence of a quantum phase transitio
a critical valueVc of the f -d hybridization rate or, equiva-
lently, for a critical interaction strengthUc . For V.Vc ~or
U,Uc) the system is a metal. ForV<Vc ~or U>Uc) the
system behaves as an insulator in Gutzwiller’s approxim
tion and as a semimetal in the Hubbard-III approach. Ba
on the results of these two approximate methods, we pre
the occurrence of a similar quantum phase transition in
exact solution of the PAM with nearest-neighbor hybridiz
tion. A number of the properties of this transition, such a
strong suppression of the Kondo temperature on the met
side, were also predicted. Most importantly, we conclu
from our results that thenatureof the transition in the exact
solution of the PAM will be that of ametal-semimetal, not a
metal-insulator5 transition. These analytical results are com
pared with the DOS obtained from QMC simulations a
NRG results for thed and f bands. We find good agreemen
between our scenario and QMC or NRG results in high s
tial dimensions (d5`), while our results are at least consi
tent with the QMC calculations published here and in Refs
and 4 for the three-dimensional PAM.
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