1,367 research outputs found
Context Modeling for Ranking and Tagging Bursty Features in Text Streams
Bursty features in text streams are very useful in many text mining applications. Most existing studies detect bursty features based purely on term frequency changes without taking into account the semantic contexts of terms, and as a result the detected bursty features may not always be interesting or easy to interpret. In this paper we propose to model the contexts of bursty features using a language modeling approach. We then propose a novel topic diversity-based metric using the context models to find newsworthy bursty features. We also propose to use the context models to automatically assign meaningful tags to bursty features. Using a large corpus of a stream of news articles, we quantitatively show that the proposed context language models for bursty features can effectively help rank bursty features based on their newsworthiness and to assign meaningful tags to annotate bursty features. ? 2010 ACM.EI
Multi-convolution feature extraction and recurrent neural network dependent model for short-term load forecasting
Load forecasting is critical for power system operation and market planning.With the increased penetration of renewable energy and the massive consumption of electric energy, improving load forecasting accuracy has become a dif�cult task. Recently, it was demonstrated that deep learning models perform well for short-term load forecasting (STLF). However, prior research has demonstrated that the hybrid deep learning model outperforms the single model. We propose a hybrid neural network in this article that combines elements of a convolutional neural network (1D-CNN) and a long short memory network (LSTM) in novel ways. Multiple independent 1D-CNNs are used to extract load, calendar, and weather features from the proposed hybrid model, while LSTM is used to learn time patterns. This architecture is referred to as a CNN-LSTM network with multiple heads (MCNN-LSTM). To demonstrate the proposed hybrid deep learning model's superior performance, the proposed method is applied to Ireland's load data for single-step and multi-step load forecasting. In comparison to the widely used CNN-LSTM hybrid model, the proposed model improved single-step prediction by 16.73% and 24-step load prediction by 20.33%. Additionally, we use the Maine dataset to verify the proposed model's generalizability
- …
