496 research outputs found

    ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis.

    Get PDF
    Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In plants, the 5'-terminal nucleotide is important for sRNA sorting into different AGOs. Here we show that microRNA (miRNA) duplex structure also contributes to miRNA sorting. Base pairing at the 15th nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis AGO1 and AGO2. AGO2 favours miRNA duplexes with no middle mismatches, whereas AGO1 tolerates, or prefers, duplexes with central mismatches. AGO structure modelling and mutational analyses reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of AtAGO2 is important for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure which we predict redirects it to AGO2

    Target Identification : A Challenging Step in Forward Chemical Genetics

    Get PDF
    Investigation of the genetic functions in complex biological systems is a challenging step in recent year. Hence, several valuable and interesting research projects have been developed with novel ideas to find out the unknown functions of genes or proteins. To validate the applicability of their novel ideas, various approaches are built up. To date, the most promising and commonly used approach for discovering the target proteins from biological system using small molecule is well known a forward chemical genetics which is considered to be more convenient than the classical genetics. Although, the forward chemical genetics consists of the three basic components, the target identification is the most challenging step to chemical biology researchers. Hence, the diverse target identification methods have been developed and adopted to disclose the small molecule bound protein. Herein, in this review, we briefly described the first two parts chemical toolbox and screening, and then the target identifications in forward chemical genetics are thoroughly described along with the illustrative real example case study. In the tabular form, the different biological active small molecules which are the successful examples of target identifications are accounted in this research review.22Yothe

    Seeing Elastin: A Near-Infrared Zwitterionic Fluorescent Probe for In Vivo Elastin Imaging

    Get PDF
    Elastic fibers are present in a variety of tissues and are responsible for their resilience. Until now, no optical contrast agent in the near-infrared (NIR) wavelength range of 700-900 nm has been reported for the imaging of elastic fibers. Here, we report the discovery of a NIR zwitterionic elastin probe ElaNIR (elastin NIR) through fluorescent-image-based screening. The probe was successfully applied for in vitro, ex vivo, and in vivo imaging by various imaging modalities. Age-related elastin differences shown by in vivo fluorescent and photoacoustic imaging indicated that ElaNIR can be a potentially convenient tool for uncovering changes of elastin in live models.11Ysciescopu
    corecore