61 research outputs found

    Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study

    Get PDF
    This work investigated, for the first time, the role of nanosized lignin (LNP), in comparison with microlignin (LMP), when introduced at two different weight amounts (5% and 10 wt%) in bulk phenol–formaldehyde resol as adhesive. Morphological analysis was performed to check out the dispersion and interfacial bonding of lignin in the phenolic resin. The curing process has been examined by differential scanning calorimetry (DSC), while the thermal stability of the composites has been evaluated by using thermogravimetric (TGA) and thermo-mechanical (TMA) analysis. Results exhibited that small amount of lignin could both favor the thermal cure reaction, due to its abundance of phenylpropane units, and the initial thermal resistance could be consequently improved, especially when the nano-sized lignin was used. Meanwhile, the effect of micro- and nano-modification on tensile shear strength of wood lap joints based on lignin-phenol–formaldehyde resol adhesives was also analyzed. Results showed that 5 wt% of LNP could positively increase the shear strength from 8.7 to 10.9 MPa, opening the possibility of using environmental friendly nanoscale lignin in cross linked traditional phenol wood adhesives with enhanced adhesion performance, strongly related to nanoparticles higher specific surface area and reactivity. Keywords: A. Resol resin, A. Lignin micro/nanoparticles, B. Thermal properties, D. Shear tes

    Study on Cellular Structure and Mechanical Property of Foaming/Cross-linking Polyethylene System

    No full text
    The cellular structure and mechanical property of a sequential foaming/cross-linking polyethylene system were studied in this work. By adjusting the components, foaming starts before the cross-linking reaction initiated and the melt strength increases during the foaming process. Rubber Process Analyzer (RPA) was used for the in situ monitoring and measuring of the foaming and cross-linking process. The cellular structure and expansion ratio of polyethylene foam can be modulated by controlling the type and ratio of foaming agent and cross-linking agent, as well as the foaming/cross-linking conditions. The mechanical strength was tested by universal mechanical testing machine, the melt strength were also characterized and analyzed. Experimental results demonstrated that the cross-linking controlled the cellular size and improved mechanical strength

    Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/ Poly(butylene adipate-co-terephthalate) Blends

    Get PDF
    Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC) results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium

    Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6

    No full text
    \u3cp\u3eThe oxidative degradation behavior of polymers depends on a combination of chemical and physical factors, with oxygen diffusion being one of the most important, especially when the oxygen consumption rate is larger than its permeability. As a result of diffusion limited oxidation (DLO), at high temperatures the degradation rate of polyamide 6 (PA6) plaques is heterogeneous, with the polymer oxidizing much faster at the surface than in the bulk. Normalized carbonyl index (CI) and UV absorption - depth profiles were found to be mostly degradation time independent, implying equilibrium degradation conditions where oxygen permeability and reaction rates did not change significantly with degradation time. The experimental DLO profiles were described using a basic reactive-diffusion model based on Fickian oxygen diffusion and an oxidation rate being first order in local O\u3csub\u3e2\u3c/sub\u3e concentration, as well as by applying an established DLO model based on the basic autoxidation mechanism. Analysis with the second model yielded the best estimation of high temperature oxygen permeability (P\u3csub\u3eO2\u3c/sub\u3e) data. It also showed some of the limitations in the data analysis when using a simple first order DLO model. It was shown that stabilizers have an influence on the oxidation - depth profiles. Better stabilization results in slower polymer oxidation and the oxidation - depth profiles are therefore less pronounced. At 170 °C it was observed that stabilized plaques (0.5 mm) in the center oxidize faster than unstabilized plaques, which is attributed to the complete consumption of oxygen in the outer layers for the unstabilized plaques. Oxidation rates of differently stabilized samples were also determined by applying the second DLO model.\u3c/p\u3

    Melt Free-Radical Grafting of Maleic Anhydride onto Biodegradable Poly(lactic acid) by Using Styrene as A Comonomer

    No full text
    Maleic anhydride (MA) was grafted onto poly(lactic acid) (PLA) in the presence of styrene (St) by using a free-radical grafting methodology. The grafting degree (Dg) of MA was increased from 0.65 wt % to 1.1 wt % with the St/MA ratio up to 2/1, where the grafting efficiency (Eg) of MA was 27%. However, both Dg and Eg were decreased with further increasing of the St/MA ratio to 4/1. The Dg of MA increased with MA concentration and showed a maximum at 180 °C in the temperature range of 165 °C–190 °C. The grafting mechanisms of MA in the presence of St are analyzed based on titration, thermogravimetric analysis and infrared results, i.e., MA is grafted onto PLA chains via single monomers and a charge-transfer-complex (CTC) at St/MA ratios of ≤ 1/1, while dominantly via St-co-MA oligomers at St/MA ratios of around 2/1. Copolymerization rather than grafting of St and MA occurs at St/MA ratios of around 4/1. The thermal stability of PLA was compromised to a certain extent by the grafting of MA, resulting in reductions in the decomposition temperature (Td-5%) and molecular weight of the PLA. In addition, the crystallization and melting temperatures of the PLA were slightly reduced after the grafting

    Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate) Bioelastomer

    No full text
    In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate) (PXS) bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate) (PXGS) has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC) results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application

    The Effect of Thermal History on the Fast Crystallization of Poly(l-Lactide) with Soluble-Type Nucleators and Shear Flow

    No full text
    The N1,N1ʹ-(ethane-1,2-diyl)bis(N2-phenyloxalamide) (OXA) is a soluble-type nucleator with a dissolving temperature of 230 °C in poly(l-lactic acid) (PLLA) matrix. The effect of thermal history and shear flow on the crystallization behavior of the PLLA/OXA samples was investigated by rheometry, polarized optical microscopy (POM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM). The crystallization process of the PLLA/OXA-240 sample (i.e., pre-melted at 240 °C) was significantly promoted by applying a shear flow, e.g., the onset crystallization time (tonset) of the PLLA at 155 °C was reduced from 1600 to 200 s after shearing at 0.4 rad/s for even as short as 1.0 s, while the crystallinity (Xc) was increased to 40%. Moreover, the tonset of the PLLA/OXA-240 sample is 60%–80% lower than that of the PLLA/OXA-200 sample (i.e., pre-melted at 200 °C) with a total shear angle of 2 rad, indicating a much higher crystallization rate of the PLLA/OXA-240 sample. A better organization and uniformity of OXA fibrils can be obtained due to a complete pre-dissolution in the PLLA matrix followed by shear and oscillation treatments. The well dispersed OXA fibrils and flow-induced chain orientation are mainly responsible for the fast crystallization of the PLLA/OXA-240 samples. In addition, the shear flow created some disordered α′-form crystals in the PLLA/OXA samples regardless of the thermal history (200 or 240 °C)

    Bio-Based Hotmelt Adhesives with Well-Adhesion in Water

    No full text
    We suggest a simple idea of bio-based adhesives with strong adhesion even under water. The adhesives simply prepared via polycondensation of 3,4-dihydroxyhydrocinnamic acid (DHHCA) and lactic acid (LA) in one pot polymerization. Poly(DHHCA-co-LA) has a hyperbranched structure and demonstrated strong dry and wet adhesion strength on diverse material surfaces. We found that their adhesion strength depended on the concentration of DHHCA. Poly(DHHCA-co-LA) with the lowest concentration of DHHCA showed the highest adhesion strength in water with a value of 2.7 MPa between glasses, while with the highest concentration of DHHCA it exhibited the highest dry adhesion strength with a value of 3.5 MPa, which was comparable to commercial instant super glue. Compared to underwater glues reported previously, our adhesives were able to spread rapidly under water with a low viscosity and worked strongly. Poly(DHHCA-co-LA) also showed long-term stability and kept wet adhesion strength of 2.2 MPa after steeping in water for 1 month at room temperature (initial strength was 2.4 MPa). In this paper, Poly(DHHCA-co-LA) with strong dry and wet adhesion properties and long-term stability was demonstrated for various kinds of applications, especially for wet conditions

    Bio-Based Hotmelt Adhesives with Well-Adhesion in Water

    No full text
    We suggest a simple idea of bio-based adhesives with strong adhesion even under water. The adhesives simply prepared via polycondensation of 3,4-dihydroxyhydrocinnamic acid (DHHCA) and lactic acid (LA) in one pot polymerization. Poly(DHHCA-co-LA) has a hyperbranched structure and demonstrated strong dry and wet adhesion strength on diverse material surfaces. We found that their adhesion strength depended on the concentration of DHHCA. Poly(DHHCA-co-LA) with the lowest concentration of DHHCA showed the highest adhesion strength in water with a value of 2.7 MPa between glasses, while with the highest concentration of DHHCA it exhibited the highest dry adhesion strength with a value of 3.5 MPa, which was comparable to commercial instant super glue. Compared to underwater glues reported previously, our adhesives were able to spread rapidly under water with a low viscosity and worked strongly. Poly(DHHCA-co-LA) also showed long-term stability and kept wet adhesion strength of 2.2 MPa after steeping in water for 1 month at room temperature (initial strength was 2.4 MPa). In this paper, Poly(DHHCA-co-LA) with strong dry and wet adhesion properties and long-term stability was demonstrated for various kinds of applications, especially for wet conditions

    Superior Mechanical Properties of Double-Network Hydrogels Reinforced by Carbon Nanotubes without Organic Modification

    Get PDF
    A facile method is developed to fabricate nanocomposite double-network (DN) gels with excellent mechanical properties, which do not fracture upon loading up to 78 MPa and a strain above 0.98, by compositing of carbon nanotubes (CNTs) without organic modification. Investigations of swelling behaviors, and compressive and tensile properties indicate that equilibrium swelling ratio, compressive modulus and stress, fracture stress, Young’s modulus, and yield stress are significantly improved in the presence of CNTs. Scanning electron microscopy (SEM) reveals that the pore size of nanocomposite DN gels is decreased and some embedded micro-network structures are observed on the fracture surface in comparison to DN gels without CNTs, which leads to the enhancement of mechanical properties. The compressive loading-unloading behaviors show that the area of hysteresis loop, dissipated energy, for the first compressive cycle, increases with addition of CNTs, which is much higher than that for the successive cycles. Furthermore, the energy dissipation mechanism, similar to the Mullins effect observed in filled rubbers, is demonstrated for better understanding the nanocomposite DN polymer gels with CNTs
    • …
    corecore