22,649 research outputs found

    Oriented gap opening in the magnetically ordered state of Iron-pnicitides: an impact of intrinsic unit cell doubling on the FeFe square lattice by AsAs atoms

    Full text link
    We show that the complicated band reconstruction near Fermi surfaces in the magnetically ordered state of iron-pnictides observed by angle-resolved photoemission spectroscopies (ARPES) can be understood in a meanfield level if the \emph{intrinsic unit cell doubling} due to As atoms is properly considered as shown in the recently constructed S4_{4} microscopic effective model. The (0,Ï€\pi) or (Ï€\pi,0) col-linear antiferromagnetic (C-AFM) order does not open gaps between two points at Fermi surfaces linked by the ordered wave vector but forces a band reconstruction involving four points in unfolded Brillouin zone (BZ) and gives rise to small pockets or hot spots. The S4_4 symmetry naturally chooses a staggered orbital order over a ferro-orbital order to coexist with the C-AFM order. These results strongly suggest that the kinematics based on the S4_{4} symmetry captures the essential low energy physics of iron-based superconductors.Comment: 5 figures, 5 page

    The Distribution of Satellites Around Central Galaxies in a Cosmological Hydrodynamical Simulation

    Full text link
    Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations.We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.Comment: ApJ Letter, accepted. Four figures, no table. The resolution of Fig 1 was downgraded due to the limitation of file size. Updated to match the version in pres

    Random matrices with external source and KP Ï„\tau functions

    Full text link
    In this paper we prove that the partition function in the random matrix model with external source is a KP Ï„\tau function.Comment: 12 pages, title change

    In vivo optical-resolution photoacoustic computed tomography with compressed sensing

    Get PDF
    Optical-resolution photoacoustic microscopy is becoming a powerful research tool for studying microcirculation in vivo. Moreover, ultrasonic-array-based optical-resolution photoacoustic computed tomography (OR-PACT), providing comparable resolution at an improved speed, has opened up new opportunities for studying microvascular dynamics. In this Letter, we have developed a compressed sensing with partially known support (CS-PKS) photoacoustic reconstruction strategy for OR-PACT. Compared with conventional backprojection reconstruction, the CS-PKS strategy was shown to produce high-quality in vivo OR-PACT images with threefold less measurement data, which can be leveraged to improve the data acquisition speed and costs of OR-PACT systems
    • …
    corecore