2,058 research outputs found

    The Effect of Training Dataset Size on SAR Automatic Target Recognition Using Deep Learning

    Get PDF
    Synthetic aperture radar (SAR) is an effective remote sensor for target detection and recognition. Deep learning has a great potential for implementing automatic target recognition based on SAR images. In general, Sufficient labeled data are required to train a deep neural network to avoid overfitting. However, the availability of measured SAR images is usually limited due to high cost and security in practice. In this paper, we will investigate the relationship between the recognition performance and training dataset size. The experiments are performed on three classifiers using MSTAR (Moving and Stationary Target Acquisition and Recognition) dataset. The results show us the minimum size of the training set for a particular classification accuracy

    Head and Neck Tumor Segmentation from [18F]F-FDG PET/CT Images Based on 3D Diffusion Model

    Full text link
    Head and neck (H&N) cancers are among the most prevalent types of cancer worldwide, and [18F]F-FDG PET/CT is widely used for H&N cancer management. Recently, the diffusion model has demonstrated remarkable performance in various image-generation tasks. In this work, we proposed a 3D diffusion model to accurately perform H&N tumor segmentation from 3D PET and CT volumes. The 3D diffusion model was developed considering the 3D nature of PET and CT images acquired. During the reverse process, the model utilized a 3D UNet structure and took the concatenation of PET, CT, and Gaussian noise volumes as the network input to generate the tumor mask. Experiments based on the HECKTOR challenge dataset were conducted to evaluate the effectiveness of the proposed diffusion model. Several state-of-the-art techniques based on U-Net and Transformer structures were adopted as the reference methods. Benefits of employing both PET and CT as the network input as well as further extending the diffusion model from 2D to 3D were investigated based on various quantitative metrics and the uncertainty maps generated. Results showed that the proposed 3D diffusion model could generate more accurate segmentation results compared with other methods. Compared to the diffusion model in 2D format, the proposed 3D model yielded superior results. Our experiments also highlighted the advantage of utilizing dual-modality PET and CT data over only single-modality data for H&N tumor segmentation.Comment: 28 pages, 5 figure

    Crescent Waves in Optical Cavities

    Full text link
    We theoretically and experimentally generate stationary crescent surface solitons pinged to the boundary of a micro-structured vertical cavity surface emission laser by using the intrinsic cavity mode as a background potential. Instead of a direct transition from linear to nonlinear cavity modes, we demonstrate the existence of a symmetry-breaking crescent waves without any analogs in the linear limit. Our results provide an alternative and general method to control lasing characteristics as well as to study optical surface waves.Comment: 3 figure
    • …
    corecore