85 research outputs found

    Detection time and FPS of the FD_Net and other models.

    No full text
    Detection time and FPS of the FD_Net and other models.</p

    Coordinate the format of the fish detection dataset for the bounding box.

    No full text
    Coordinate the format of the fish detection dataset for the bounding box.</p

    Comparison of proposed FD_Net and seven YOLO models using the fish dataset at 299 x 299 x 3 image resolution.

    No full text
    Comparison of proposed FD_Net and seven YOLO models using the fish dataset at 299 x 299 x 3 image resolution.</p

    Summary of the fish detection dataset.

    No full text
    Regular monitoring of the number of various fish species in a variety of habitats is essential for marine conservation efforts and marine biology research. To address the shortcomings of existing manual underwater video fish sampling methods, a plethora of computer-based techniques are proposed. However, there is no perfect approach for the automated identification and categorizing of fish species. This is primarily due to the difficulties inherent in capturing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic environments, watercolor, poor resolution, shape variation of moving fish, and tiny differences between certain fish species. This study has proposed a novel Fish Detection Network (FD_Net) for the detection of nine different types of fish species using a camera-captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented feature extraction network bottleneck attention module (BNAM). The mean average precision (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is utilized in the method for the extraction of features is an improved version of DenseNet-169, and the loss function is an Arcface Loss. Widening the receptive field and improving the capability of feature extraction are achieved by incorporating dilated convolution into the dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM into the dense block of the DenseNet-169 neural network. The results of several experiments comparisons and ablation experiments demonstrate that our proposed FD_Net has a higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species detection tasks in complex environments.</div

    The block structure of DenseNet-169.

    No full text
    Regular monitoring of the number of various fish species in a variety of habitats is essential for marine conservation efforts and marine biology research. To address the shortcomings of existing manual underwater video fish sampling methods, a plethora of computer-based techniques are proposed. However, there is no perfect approach for the automated identification and categorizing of fish species. This is primarily due to the difficulties inherent in capturing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic environments, watercolor, poor resolution, shape variation of moving fish, and tiny differences between certain fish species. This study has proposed a novel Fish Detection Network (FD_Net) for the detection of nine different types of fish species using a camera-captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented feature extraction network bottleneck attention module (BNAM). The mean average precision (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is utilized in the method for the extraction of features is an improved version of DenseNet-169, and the loss function is an Arcface Loss. Widening the receptive field and improving the capability of feature extraction are achieved by incorporating dilated convolution into the dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM into the dense block of the DenseNet-169 neural network. The results of several experiments comparisons and ablation experiments demonstrate that our proposed FD_Net has a higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species detection tasks in complex environments.</div

    Comparison of proposed FD_Net and seven YOLO models in obtaining mAP value by using the fish dataset at various resolutions.

    No full text
    Comparison of proposed FD_Net and seven YOLO models in obtaining mAP value by using the fish dataset at various resolutions.</p

    Backbone network DenseNet-169.

    No full text
    Regular monitoring of the number of various fish species in a variety of habitats is essential for marine conservation efforts and marine biology research. To address the shortcomings of existing manual underwater video fish sampling methods, a plethora of computer-based techniques are proposed. However, there is no perfect approach for the automated identification and categorizing of fish species. This is primarily due to the difficulties inherent in capturing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic environments, watercolor, poor resolution, shape variation of moving fish, and tiny differences between certain fish species. This study has proposed a novel Fish Detection Network (FD_Net) for the detection of nine different types of fish species using a camera-captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented feature extraction network bottleneck attention module (BNAM). The mean average precision (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is utilized in the method for the extraction of features is an improved version of DenseNet-169, and the loss function is an Arcface Loss. Widening the receptive field and improving the capability of feature extraction are achieved by incorporating dilated convolution into the dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM into the dense block of the DenseNet-169 neural network. The results of several experiments comparisons and ablation experiments demonstrate that our proposed FD_Net has a higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species detection tasks in complex environments.</div

    Sample fish images of the dataset.

    No full text
    Regular monitoring of the number of various fish species in a variety of habitats is essential for marine conservation efforts and marine biology research. To address the shortcomings of existing manual underwater video fish sampling methods, a plethora of computer-based techniques are proposed. However, there is no perfect approach for the automated identification and categorizing of fish species. This is primarily due to the difficulties inherent in capturing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic environments, watercolor, poor resolution, shape variation of moving fish, and tiny differences between certain fish species. This study has proposed a novel Fish Detection Network (FD_Net) for the detection of nine different types of fish species using a camera-captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented feature extraction network bottleneck attention module (BNAM). The mean average precision (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is utilized in the method for the extraction of features is an improved version of DenseNet-169, and the loss function is an Arcface Loss. Widening the receptive field and improving the capability of feature extraction are achieved by incorporating dilated convolution into the dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM into the dense block of the DenseNet-169 neural network. The results of several experiments comparisons and ablation experiments demonstrate that our proposed FD_Net has a higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species detection tasks in complex environments.</div

    Fig 9 -

    No full text
    Training and validation accuracy curves of the a) FD_Net model, b) YOLOv3, c) YOLOv3-TL, d) YOLOv3-BL, e) YOLOv4, f) YOLOv5, g) Faster-RCNN, and h) YOLOv7.</p

    mAP score comparison between the different sizes of images.

    No full text
    mAP score comparison between the different sizes of images.</p
    corecore