51,966 research outputs found
First principles investigation of transition-metal doped group-IV semiconductors: RY (R=Cr, Mn, Fe; Y=Si, Ge)
A number of transition-metal (TM) doped group-IV semiconductors,
RY (R=Cr, Mn and Fe; Y=Si, Ge), have been studied by the first
principles calculations. The obtained results show that antiferromagnetic (AFM)
order is energetically more favored than ferromagnetic (FM) order in Cr-doped
Ge and Si with =0.03125 and 0.0625. In 6.25% Fe-doped Ge, FM interaction
dominates in all range of the R-R distances while for Fe-doped Ge at 3.125% and
Fe-doped Si at both concentrations of 3.125% and 6.25%, only in a short R-R
range can the FM states exist. In the Mn-doped case, the RKKY-like mechanism
seems to be suitable for the Ge host matrix, while for the Mn-doped Si, the
short-range AFM interaction competes with the long-range FM interaction. The
different origin of the magnetic orders in these diluted magnetic
semiconductors (DMSs) makes the microscopic mechanism of the ferromagnetism in
the DMSs more complex and attractive.Comment: 14 pages, 2 figures, 6 table
Multipole polarizability of a graded spherical particle
We have studied the multipole polarizability of a graded spherical particle
in a nonuniform electric field, in which the conductivity can vary radially
inside the particle. The main objective of this work is to access the effects
of multipole interactions at small interparticle separations, which can be
important in non-dilute suspensions of functionally graded materials. The
nonuniform electric field arises either from that applied on the particle or
from the local field of all other particles. We developed a differential
effective multipole moment approximation (DEMMA) to compute the multipole
moment of a graded spherical particle in a nonuniform external field. Moreover,
we compare the DEMMA results with the exact results of the power-law graded
profile and the agreement is excellent. The extension to anisotropic DEMMA will
be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication
Boundary effect on CDW: Friedel oscillations, STM image
We study the effect of open boundary condition on charge density waves (CDW).
The electron density oscillates rapidly close to the boundary, and additional
non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond
the CDW coherence length (v_F/Delta), but their amplitude gets heavily
suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear
features of the boundary. The local tunneling conductance becomes asymmetric
with respect to the Fermi energy, and considerable amount of spectral weight is
transferred to the lower gap edge. Also it exhibits additional zeros reflecting
the influence of the boundary.Comment: 7 pages, 6 figure
Experiments and Simulations of short-pulse laser-pumped extreme ultraviolet lasers
Recent experimental work on the development of extreme ultraviolet lasers undertaken using as the pumping source the VULCAN laser at the Rutherford Appleton Laboratory is compared to detailed simulations. It is shown that short duration (similar topicosecond) pumping can produce X-ray laser pulses of a few picosecond duration and that measurement of the emission from the plasma can give an estimate of the duration of the gain coefficient. The Ehybrid fluid and atomic physics code developed at the University of York is used to simulate X-ray laser gain and plasma emission. Two postprocessors to the Ehybrid code are utilized: 1) to raytrace the X-ray laser beam amplification and refraction and 2) to calculate the radiation emission in the kiloelectronvolt photon energy range. The raytracing and spectral simulations are compared, respectively, to measured X-ray laser output and the output of two diagnostics recording transverse X-ray emission. The pumping laser energy absorbed in the plasma is examined by comparing the simulations to experimental results. It is shown that at high pumping irradiance (>10(15) Wcm(-2)), fast electrons are produced by parametric processes in the preformed long scale-length plasmas. These fast electrons do not pump the population inversion and so pumping efficiency is reduced at high irradiance
Internalisation of membrane progesterone receptor-α after treatment with progesterone: Potential involvement of a clathrin-dependent pathway
This article has been made available through the Brunel Open Access Publishing Fund.Internalisation and recycling of seven trans-membrane domain receptors is a critical regulatory event for their signalling. The mechanism(s) by which membrane progesterone receptor-α (mPRα) number is regulated on the cell surface is unclear. In this study, we investigated the cellular distribution of mPRα and mechanisms of mPRα trafficking using a cell line derived from a primary culture of human myometrial cells (M11) as an experimental model. RT-PCR and immunofluorescent analysis demonstrated expression of mPRα in M11 cells with mPRα primarily distributed on the cell surface under basal conditions. For the first time, plasma membrane localisation of mPRα was confirmed using immuno-gold transmission electron microscopy. Stimulation of M11 cells with progesterone (P4, 100 nM) resulted in internalisation of mPRα from the plasma membrane to the cytoplasm (10 min) and subsequent partial translocation back to the cell surface (20 min). We investigated potential endocytotic pathways involved in trafficking of mPRα after its internalisation. Partial co-localisation of clathrin with mPRα was obvious after 10 min of P4 treatment. Of note, chlorpromazine (inhibitor of clathrin-mediated pathway) inhibited the endocytosis of mPRα, whereas treatment with nystatin (inhibitor of caveolae-mediated pathway) did not affect internalisation. Collectively, these data suggest that mPRα is expressed on the cell surface of M11 cells and undergoes endocytosis after P4 stimulation primarily via a clathrin-mediated pathway.This article is available through the Brunel Open Access Publishing Fun
R-Mode Oscillations and Spindown of Young Rotating Magnetic Neutron Stars
Recent work has shown that a young, rapidly rotating neutron star loses
angular momentum to gravitational waves generated by unstable r-mode
oscillations. We study the spin evolution of a young, magnetic neutron star
including both the effects of gravitational radiation and magnetic braking
(modeled as magnetic dipole radiation). Our phenomenological description of
nonlinear r-modes is similar to, but distinct from, that of Owen et al. (1998)
in that our treatment is consistent with the principle of adiabatic invariance
in the limit when direct driving and damping of the mode are absent. We show
that, while magnetic braking tends to increase the r-mode amplitude by spinning
down the neutron star, it nevertheless reduces the efficiency of gravitational
wave emission from the star. For B >= 10^14 (\nus/300 Hz)^2 G, where \nus is
the spin frequency, the spindown rate and the gravitational waveforms are
significantly modified by the effect of magnetic braking. We also estimate the
growth rate of the r-mode due to electromagnetic (fast magnetosonic) wave
emission and due to Alfven wave emission in the neutron star magnetosphere. The
Alfven wave driving of the r-mode becomes more important than the gravitational
radiation driving when B >= 10^13 (\nus/150 Hz)^3 G; the electromagnetic wave
driving of the r-mode is much weaker. Finally, we study the properties of local
Rossby-Alfven waves inside the neutron star and show that the fractional change
of the r-mode frequency due to the magnetic field is of order 0.5 (B/10^16 G)^2
(\nus/100 Hz)^-2.Comment: 18 pages, 4 figures; ApJ, accepted (v544: Nov 20, 2000); added two
footnotes and more discussion of mode driving by Alfven wave
- …