2 research outputs found

    Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli

    No full text
    We report the development of a piezopotential-programmed nonvolatile memory array using a combination of ion gel-gated field-effect transistors (FETs) and piezoelectric nanogenerators (NGs). Piezopotentials produced from the NGs under external strains were able to replace the gate voltage inputs associated with the programming/erasing operation of the memory, which reduced the power consumption compared with conventional memory devices. Multilevel data storage in the memory device could be achieved by varying the external bending strain applied to the piezoelectric NGs. The resulting devices exhibited good memory performance, including a large programming/erasing current ratio that exceeded 10<sup>3</sup>, multilevel data storage of 2 bits (over 4 levels), performance stability over 100 cycles, and stable data retention over 3000 s. The piezopotential-programmed multilevel nonvolatile memory device described here is important for applications in data-storable electronic skin and advanced human-robot interface operations

    Petal-Inspired Diffractive Grating on a Wavy Surface: Deterministic Fabrications and Applications to Colorizations and LED Devices

    No full text
    Interestingly, the petals of flowering plants display unique hierarchical structures, in which surface relief gratings (SRGs) are conformably coated on a curved surface with a large radius of curvature (hereafter referred to as wavy surface). However, systematic studies on the interplay between the diffractive modes and the wavy surface have not yet been reported, due to the absence of deterministic nanofabrication methods capable of generating combinatorially diverse SRGs on a wavy surface. Here, by taking advantage of the recently developed nanofabrication composed of evaporative assembly and photofluidic holography inscription, we were able to achieve (i) combinatorially diverse petal-inspired SRGs with controlled curvatures, periodicities, and dimensionalities, and (ii) systematic optical studies of the relevant diffraction modes. Furthermore, the unique diffraction modes of the petal-inspired SRGs were found to be useful for the enhancement of the outcoupling efficiency of an organic light emitting diode (OLED). Thus, our systematic analysis of the interplay between the diffractive modes and the petal-inspired SRGs provides a basis for making more informed decisions in the design of petal-inspired diffractive grating and its applications to optoelectronics
    corecore