506 research outputs found

    CP violation in chargino decays in the MSSM

    Get PDF
    In the minimal supersymmetric standard model (MSSM) with complex parameters, supersymmetric loop effects can lead to \emph{CP} violation. We calculate the rate asymmetries of decays of charginos into the lightest neutralino and a WW boson on the basis of the most important loop contributions in the third generation squark sectors. It turns out that the \emph{CP} violating asymmetries can be a few per cent in typical regions of the parameter space of the MSSM. These processes would provide very promising channels for probing \emph{CP} violation in the MSSM at future high-energy colliders.Comment: 15 pages, 5 figures, LaTeX2

    Features of heavy physics in the CMB power spectrum

    Full text link
    The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of `heavy' physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll), even in cases where the normal modes have masses approaching the cutoff of our theory. We emphasise that turning is defined with respect to the geodesics of the sigma model metric, irrespective of whether this is canonical or non-trivial. The imprints generically take the form of damped superimposed oscillations on the power spectrum. In the particular case of two-field models, if one of the fields is sufficiently massive compared to the scale of inflation, we are able to compute an effective low energy theory for the adiabatic mode encapsulating certain relevant operators of the full multi-field dynamics. As expected, a particular characteristic of this effective theory is a modified speed of sound for the adiabatic mode which is a functional of the background inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect non-Gaussian signatures directly related to the features imprinted in the power spectrum.Comment: 41 pages, 6 figures, references updated, minor modifications. Version to appear in JCAP. v4: Equations (4.28) and (4.30) and Figures 5 and 6 correcte

    Neutralino properties in the light of a further indication of an annual modulation effect in WIMP direct search

    Get PDF
    We demonstrate that the further indication of a possible annual modulation effect, singled out by the DAMA/NaI experiment for WIMP direct detection, is widely compatible with an interpretation in terms of a relic neutralino as the major component of dark matter in the Universe. We discuss the supersymmetric features of this neutralino in the Minimal Supersymmetric extension of the Standard Model (MSSM) and their implications for searches at accelerators.Comment: 15 pages, ReVTeX, 9 figures (included as PS files

    Gaugino Mass Nonuniversality and Dark Matter in SUGRA, Strings and D Brane Models

    Full text link
    The effects of nonuniversality of gaugino masses on dark matter are examined within supersymmetric grand unification, and in string and D brane models with R parity invariance. In SU(5) unified models nonuniversality in the gaugino sector can be generated via the gauge kinetic energy function which may depend on the 24, 75 and 200 dimensional Higgs representations. We also consider string models which allow for nonuniversality of gaugino masses and D brane models where nonuniversality arises from embeddings of the Standard Model gauge group on five branes and nine branes. It is found that with gaugino mass nonuniversality the range of the LSP mass can be extended much beyond the range allowed in the universal SUGRA case, up to about 600 GeV even without coannihilation effects in some regions of the parameter space. The effects of coannihilation are not considered and inclusion of these effects may further increase the allowed neutralino mass range. Similarly with the inclusion of gaugino mass nonuniversality, the neutralino-proton (χ−p\chi -p) cross-section can increase by as much as a factor of 10 in some of regions of the parameter space. An analysis of the uncertainties in the quark density content of the nucleon is given and their effects on χ−p\chi -p cross-section are discussed. The predictions of our analysis including nonuniversality is compared with the current limits from dark matter detectors and implications for future dark matter searches are discussed.Comment: Revised version, 23 pages, Latex, and 7 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Study of J/ψ→ωK+K−J/\psi \to \omega K^+K^-

    Get PDF
    New data are presented on J/ψ→ωK+K−J/\psi \to \omega K^+K^- from a sample of 58M J/ψJ/\psi events in the upgraded BES II detector at the BEPC. There is a conspicuous signal for f0(1710)→K+K−f_0(1710) \to K^+K^- and a peak at higher mass which may be fitted with f2(2150)→KKˉf_2(2150) \to K\bar K. From a combined analysis with ωπ+π−\omega \pi ^+ \pi ^- data, the branching ratio BR(f0(1710)→ππ)/BR(f0(1710)→KKˉ)BR(f_0(1710)\to\pi\pi)/BR(f_0(1710) \to K\bar K) is <0.11< 0.11 at the 95% confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
    • 

    corecore