32,130 research outputs found

    A comparative study of marginal loss pricing algorithms in electricity markets

    Get PDF
    Due to the development of new technologies, change of generation mix and appearance of newly formed energy supply hubs, there is a large year-on-year change in the marginal loss factors in power systems. Since any change of marginal loss factors could have significant impacts on payment of loads and profitability of generators, it is necessary to carry out a comparative study on the loss factor-based locational marginal pricing methods. Considering that a systematic comparison of various locational marginal pricing methods has not been reported in existing publications, this work presents a comparative study of the loss factor-based locational marginal pricing methods that are widely adopted in electricity markets. Advantages and disadvantages of each locational marginal pricing method are explored in detail, and could serve as references in selecting appropriate locational marginal pricing methods in practice. The selected five locational marginal pricing models are tested in two standard power systems, that is, the IEEE 5-bus and 39-bus systems. Then, through numerical experiments and detailed analysis, key findings about the reference point dependency of loss factors, accuracy of loss estimation, load payment, generation income, and market settlement surplus are summarised and elaborated. It is found that marginal loss factors-based locational marginal pricing methods tend to produce a higher market settlement surplus and can lead to a lower generation income than other locational marginal pricing methods

    Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    Get PDF
    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults

    Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints

    Get PDF
    This paper addresses the attitude reorientation problems of rigid bodies under multiple state constraints. A novel reinforcement learning (RL)-based approximate optimal control method is proposed to make the trade-off between control cost and performance. The novelty lies in that it guarantees constraint handling abilities on attitude forbidden zones and angular-velocity limits. To achieve this, barrier functions are employed to encode the constraint information into the cost function. Then an RL-based learning strategy is developed to approximate the optimal cost function and control policy. A simplified critic-only neural network (NN) is employed to replace the conventional actor-critic structure once adequate data is collected online. This design guarantees the uniform boundedness of reorientation errors and NN weight estimation errors subject to the satisfaction of a finite excitation condition, which is a relaxation compared with the persistent excitation condition that is typically required for this class of problems. More importantly, all underlying state constraints are strictly obeyed during the online learning process. The effectiveness and advantages of the proposed controller are verified by both numerical simulations and experimental tests based on a comprehensive hardware-in-loop testbed
    corecore