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Reinforcement Learning-Based Approximate
Optimal Control For Attitude Reorientation Under

State Constraints
Hongyang Dong, Xiaowei Zhao, and Haoyang Yang

Abstract—This paper addresses the attitude reorientation
problems of rigid bodies under multiple state constraints. A
novel reinforcement learning (RL)-based approximate optimal
control method is proposed to make the trade-off between control
cost and performance. The novelty lies in that it guarantees
constraint handling abilities on attitude forbidden zones and
angular-velocity limits. To achieve this, barrier functions are
employed to encode the constraint information into the cost
function. Then an RL-based learning strategy is developed to
approximate the optimal cost function and control policy. A
simplified critic-only neural network (NN) is employed to replace
the conventional actor-critic structure once adequate data is
collected online. This design guarantees the uniform boundedness
of reorientation errors and NN weight estimation errors subject
to the satisfaction of a finite excitation condition, which is a
relaxation compared with the persistent excitation condition that
is typically required for this class of problems. More importantly,
all underlying state constraints are strictly obeyed during the
online learning process. The effectiveness and advantages of the
proposed controller are verified by both numerical simulations
and experimental tests based on a comprehensive hardware-in-
loop testbed.

Index Terms—Attitude Control; Reinforcement Learning;
Adaptive Dynamic Programming; State Constraints; Approxi-
mate Optimal Control.

I. INTRODUCTION

Attitude control of rigid bodies is widely investigated in
aerospace engineering [1], [2], [3], [4]. Since this type of con-
trol action normally consumes very valuable resources (e.g.,
the fuel and electricity in on-orbit missions), optimal attitude
control methods have aroused extensive attention, given their
essential abilities to balance the control cost and performance.
Theoretically, in order to achieve optimal control, one needs
to solve the Hamilton-Jacobi-Bellman (HJB) equation subject
to a user-defined cost function. However, due to the high
nonlinearity of kinematics and dynamics, analytically solving
general optimal attitude control problems is a challenging task.
An optimal solution for attitude reorientation problems was
proposed in [5]. However, it can only be applied to the rigid
bodies whose inertia matrices are diagonal. Krstic and Tsiotras
[6] employed an inverse optimal approach to address the
optimal attitude reorientation control problem without directly
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solving the HJB equation. An extension for the tracking cases
was studied in Luo et al. [7]. However, the inverse optimal
approach only can be applied to special cases with a certain
class of cost functions.

In addition to optimizing requirements, the designs of atti-
tude controllers are normally subject to some underlying state
constraints. From the standpoint of practical engineering, these
constraints are critical to the success of tasks. Unexpected
constraint violations may cause severe safety problems and
financial loss. Particularly, in attitude reorientation missions
(a typical case is the High-Revolution Earth Observation
Satellite Systems in China [8]), the control objective is to
reorient the payload to the desired direction (e.g., pointing the
sensitive payloads to targets). At the same time, underlying
state constraints must be obeyed during the control process.
Here, mainly two types of state constraints are considered.
First, special payloads, such as infrared telescopes, must be
kept away from direct exposure to the sunlight or other
bright celestial objects [9], [10], which forms a set of attitude
forbidden zones. Second, per safety concerns, the angular
velocities need to be restricted. For example, NASA’s X-ray
Timing Explorer (XTE) requires that the angular velocities
should always be within the saturation limit of its rate gyros
during reorientation actions [10], [11].

Research efforts have been carried out recently to solve
these attitude control problems subject to multiple state con-
straints. An open-loop path planning method was presented
in [12] for a single-axis pointing problem under attitude
constraints. Gupta et al. [13], [14] proposed model predictive
control (MPC) methods for constrained attitude reorientation
problems. However, the high computational complexities limit
the potential of open-loop path planning and MPC meth-
ods. An alternative solution is to design real-time feedback
control schemes with state constraint handling abilities. By
employing artificial potentials (APs), Lee and Mesbahi [9]
designed a feedback attitude reorientation control law subject
to multiple attitude constraint zones. Shen et al. [10] extended
this result by considering additional angular-velocity limits.
Some other constrained feedback controllers for six-degree-
of-freedom problems were given in [15], [16]. However, AP-
based controllers lack essential optimizing abilities and cannot
make the trade-off between control cost and performance.

In this paper, a novel online reinforcement learning (RL)-
based controller is proposed to address the optimal attitude re-
orientation control problems. The RL-based control technique
[17], [18], [19], [20], [21], [22], which is commonly referred
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to as the adaptive dynamic programming (ADP), has aroused
great research interests recently. The fundamental principle
of this new technique is to improve the control performance
by judiciously evaluating system feedback/responses. It can
iteratively approximate the optimal control policy and avoid
analytically solving the intractable HJB equation. However,
the state constraint handling ability of RL-based control is
still immature [23]. In this paper, a constrained RL-based
control method is proposed, and a critic-only neural network
(NN) structure is designed to approximate the optimal cost
function and control policy. Lyapunov-based stability analysis
guarantees the uniform boundedness (UB) of NN weight
estimation errors, barrier functions, and state errors, subject
to the satisfaction of a finite excitation condition. The main
contribution of the present paper includes:

1) The proposed method brings the essential constraint
handling abilities on complex state constraints to the
RL-based control framework. Specially designed barrier
functions are employed to encode the information of
attitude forbidden zones and angular-velocity limits. The
boundedness of these barrier functions can ensure that all
underlying state constraints are strictly obeyed.

2) The proposed controller has significant advantages over
the non-RL feedback control methods for constrained
attitude reorientation problems [9], [10]. It has the ability
to make a trade-off between control cost and perfor-
mance. Besides, the only additional computational cost
of the proposed method is induced by the updating law
of NN. Thus it also has a largely reduced computational
complexity when compared with open-loop path planning
and MPC methods [13], [14]. These facts greatly enhance
the generality and application potentials of the proposed
method.

3) A novel online learning strategy with a simplified struc-
ture under relaxed excitation conditions is proposed.
Inspired by the concurrent learning method [24], [25] and
its extensions/applications [26], [27], both real-time data
and past measurements are concurrently utilized in the
updating law of the NN weights. This design relaxes the
persistent excitation (PE) condition that is required by
conventional RL-based controllers [20], [22]. An integral-
type information matrix is designed to make full use of all
incoming data, avoiding the complex selection algorithms
employed in [26], [27].

The remainder of this paper is organized as follows. The
constrained attitude reorientation problem is formalized in
Sec. II. Then the RL-based approximate optimal controller
is designed in Sec. III. Simulation and experiment results are
given in Sec. IV, and finally, the paper is concluded in Sec. V.

Notations: In this paper, ‖ · ‖ denotes the Euclidean norm
of vectors and the induced norm of matrices; ⊗ is the
multiplication operator of quaternions; ∇x(·) = (∂(·)/∂x)T,
where (·)T is the transpose of the corresponding vector/matrix,
and we also denote ∇T

x (·) = (∇x(·))T. Besides, S4 denotes
the definition domain of unit quaternions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Attitude Kinematics and Dynamics

We employ Fr = {Xr, Yr, Zr} and Fb = {Xb, Yb, Zb} to
denote the inertia frame and the body-fixed frame, respectively.
Then the attitude model of Fb with respect to Fr is [28]

q̇b =
1

2
E(qb)ω

b
b , E(qb) =

[
−ξT

b

ηbI3×3 + S(ξb)

]
(1)

Jω̇bb = −S(ωbb)(Jω
b
b) + u (2)

where qb = [ηb, ξ
T
b ]T ∈ S4 is a unit quaternion, which is

employed to describe the attitude kinematics between the
two frames. Here ηb = cos(ϑb/2) and ξb = sin(ϑb/2)eb
are the scalar part and vector part of qb, respectively, with
ϑb and eb are the eigenangle and eigenaxis associated with
qb. Under this definition, one can easily verify that qT

b qb =
η2
b + ξT

b ξb = 1. Besides, J is the inertia matrix of the
rigid body; ωbb is the angular velocity of Fb with respect
to Fr; u is the control input to be designed; I3×3 denotes
the identity matrix; and S(·) denotes the skew-symmetric
matrices of three dimensional vectors. The post-superscript
·x indicates the corresponding vector is expressed in the a
frame Fx. We employ qd = [ηd, (ξd)

T]T ∈ S4 to denote the
desired attitude, where ηd and ξd are respectively the scalar
and vector parts of qd. Then the error quaternion can be defined
by qe = [ηe, ξ

T
e ]T = q∗d ⊗ qb, where q∗d = [ηd,−(ξd)

T]T

is the conjugate of qd, and the operator “⊗” is defined by
q1 ⊗ q2 = [η1η2 − ξT

1 ξ2, (η1ξ2 + η2ξ1 + ξ1 × ξ2)T]T, for any
q1, q2 ∈ S4. Morevoer, the error kinematics satisfies [28]

q̇e =
1

2
E(qe)ω

b
b , E(qe) =

[
−ξT

e

ηeI3×3 + S(ξe)

]
. (3)

In conventional attitude reorientation problems, the control ob-
jective is to maneuver the attitude of the rigid body from qb(0)
to qd, formalized as limt→∞ qe(t) = qI , limt→∞ ωbb(t) =
03×1, and here qI = [1, 0, 0, 0]T denotes the identity unit
quaternion. However, as mentioned in the introduction, under-
lying state constraints are often required to be obeyed during
this process. This is analyzed in the following subsections.

B. Attitude Constraints

As discussed in the introduction, in many important appli-
cations, attitude reorientation operations should keep sensitive
payloads away from any direct exposure to harmful bright
objects. This is illustrated in Fig. 1. In the figure, αi denotes
the normalized boresight vector of a sensitive payload i, and
βj is the normalized direction vector towards an object j that
needs to be avoided. To avoid unexpected exposure, the bright
object should be kept off from a cone-like field-of-view of the
payload, and the corresponding half-cone angle is denoted by
θij with 0 ≤ θij ≤ π/2.

This requirement can be described by the following inequal-
ity, based on the geometric relation illustrated in Fig. 1.

αbi · βbj − cos θij < 0. (4)

In (4), both αi and βj are expressed in the frame Fb (αbi
and βbj , respectively). Note that αbi is a constant vector under
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ij
i

Bright object j

j

Figure 1: Attitude constraint illustration

the reasonable assumption that sensitive payloads are fixed in
the rigid body. Moreover, given the coordinate transformation
law, we have βbj = C(qb)β

r
j , where C(qb) is a transformation

matrix satisfying C(qb) = I3×3 − 2ηbS(ξb) + 2S(ξb)S(ξb),
and βrj is the expression of βj in the frame Fr. Thus (4) is
equivalent to

αbi · [C(qb)β
r
j ]− cos θij < 0 (5)

and (5) can be further organized to be

qT
e ΞT(qd)MijΞ(qd)qe < 0 (6)

with Mij =

[
(αbi )

Tβrj , (αbi × βrj )T

αbi × βrj , 2αbi (β
r
j )T − ((αbi )

Tβrj )I3×3

]
−

(cos θij)I4×4 and Ξ =

[
ηd, −ξT

d

ξd, ηdI3×3 + S(ξd)

]
. Note that

the relationship qb = qd ⊗ qe is employed in (6).
To encode the information of all attitude constraints, con-

sider the following barrier function:

Va = −
k∑
i

l∑
j

γij‖qe − qI‖2 ln[−Ωij(qe)/2] (7)

where Ωij(qe) = qT
e ΞT(qd)MijΞ(qd)qe, and γij are non-

negative constant gains, i = 1, 2, ..., k, j = 1, 2, ..., l. Here
k and l denote the total number of sensitive loads and
corresponding constraint zones, respectively. Then we define
D = {qe ∈ S4 | Ωij(qe) < 0, i = 1, 2, .., k, j = 1, 2, ..., l}
to be the attitude admissible domain, and one can readily
verify that Va ≥ 0 for all qe ∈ D. Furthermore, Va = 0
when qe = qI (the desired attitude should always be in the
admissible domain), and Va → +∞ when any Ωij(qe) goes
to zero.

Remark 1: It is noteworthy that, Mij in (6) a constant
matrix. This is distinct from the relevant results in [9] and
[10]; and it is achieved through fully utilizing the invariance
property of αbi and βrj . Moreover, this property can greatly
benefit the design of the subsequent approximate optimal
controller, since it renders Va to be a function with the unique
argument qe.

C. Angular Velocity Constraints

Per safety concerns, the angular velocities of on-orbit satel-
lites are usually restricted, formalized by

‖ωbbi‖ ≤ ωmax,i (8)

where ωbbi is the ith entry of ωbb , and ωmax,i > 0 is the
maximum acceptable angular velocity, i = 1, 2, 3. A barrier
function as follows is designed to encode this constraint.

Vω = −γω
3∑
i=1

‖ωbbi‖2 ln(
ω2

max,i − ω2
bi

ω2
max,i

) (9)

where γω > 0 is the weight constant. We define F = {ωbb ∈
R3 | ωbbi < ωmax i, i = 1, 2, 3} to be the admissible set of ωbb .
Then it can be readily verified that for all ωbb ∈ F, one has
Vω ≥ 0 (the equation holds when ωbb = 03×1); and Vω → +∞
when ωbbi → ωmax,i, i = 1, 2, 3.

D. Problem Formulation and Analysis

To formalize the optimal control problem considered in
this paper, first we re-organize the system model to be the
following compact form based on (1), (2) and (3):

ẋ = f(x) + gu (10)

where x = [(qe − qI)T, (Jωbb)
T], and

f(x) =

[
0.5E(qe)ω

b
b

−S(ωbb)(Jω
b
b)

]
, g =

[
04×3

I3×3

]
. (11)

Then, based on the barrier functions of state constraints,
the control objective is to design a control policy u to
render limt→∞ x(t) = 07×1 (i.e., limt→∞ qe(t) = qI , and
limt→∞ ωbb(t) = 03×1), while minimizing the following cost
function:

V (x(t)) =

∫ ∞
t

h(x(τ))dτ, h = r + Va + Vω + uTRu (12)

where r = (qe − qI)
TQq(qe − qI) + (ωbb)

TQωω
b
b , and

Qq ∈ R4×4, Qω ∈ R3×3, and R ∈ R3×3 are positive-definite
diagonal constant matrices.

Assuming the optimal control policy u∗(x) exists, and the
corresponding optimal cost function V ∗(x) is C1. Then by
taking time derivative for both sides of (12), one has

H(x, u∗,∇xV ∗) =∇T
xV
∗[f + gu∗]

+ r + Va + Vω + (u∗)TRu∗

=0.

(13)

It should be emphasized that (13) can be established for any
admissible controllers and corresponding cost functions (not
only for the optimal ones).

Then the closed-form of u∗ can be deduced by taking partial
differential for both sides of (13) with respect to u∗:

u∗ = −1

2
R−1gT∇xV ∗. (14)

Further introducing u∗ back into Eq. (13) leads to the follow-
ing HJB equation:

r + Va + Vω +∇T
xV
∗f − 1

4
∇T
xV
∗gR−1gT∇xV ∗ = 0. (15)
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However, due to the high nonlinearity of the system model,
it is intractable to analytically solve (15). In the following
section, an RL-based online controller will be designed to
approximate the optimal solution u∗.

III. ONLINE RL-BASED CONTROL ALGORITHM

Based on the Weierstrass approximation theorem [19], [20],
a NN that contains a sufficient set of basis functions can
reconstruct the optimal cost function V ∗(x) for x ∈ X , where
X ⊂ R7 is a compact set. This can be formalized by

V ∗(x) = WTσ(x) + ε(x) (16)

and here σ(x) = [σ1(x), σ2(x), ..., σp(x)]T ∈ Rp×1 is the
basis function vector, with σi(x) satisfying σi(0) = 0 and
(dσi(0))/(dt) = 0, i = 1, 2, ..., p. W ∈ Rp×1 denotes the
unknown constant weigh vector of basis functions, and ε(x) ∈
R is the reconstruction error. Then the optimal control policy
can be transformed to

u∗(x) = −1

2
R−1gT[∇xσ(x)W +∇xε(x)]. (17)

In RL-based control, usually two sets of estimates for W
(i.e. critic and actor) are employed to respectively approximate
the optimal cost function and control policy, formalized by

V (x, Ŵc) = ŴT
c σ(x) (18)

u(x, Ŵa) = −1

2
R−1gT∇xσ(x)Ŵa (19)

where Ŵc and Ŵa denote the weights of critic and actor,
respectively.

Then considering the following Bellman error:

δb = ∇T
xV [f + gu] + h (20)

and substituting (18) and (19) into (20) yields

δb =δb −H(x, u∗,∇xV ∗)
=∇T

xV [f + gu] + uTRu−∇T
xV [f + gu∗]− (u∗)TRu∗

=$TW̃c + εH
(21)

where $ = ∇T
xσ(f + gu) and D = ∇T

xσgR
−1gT∇xσ are

employed for ease of notation, and we denote W̃c = Ŵc−W
and W̃a = Ŵa −W . Besides, εH is a residual error defined
same with [26], [29], [30]. Since δb has the information of
the weight estimation errors, it has been commonly employed
to design the update law of Ŵ . In this paper, not only the
real-time information of δb but also its past measurements are
employed. Before presenting the specific design of our RL-
based controller, some necessary definitions and assumptions
are given as follows.

Definition 1 (Finite Excitation, FE) [24]: A bounded signal
y(·) : R→ Rn×m is said to be finite exciting over an interval
[t, t + T ], where t ≥ 0 is a finite time index, if there exist
constants T > 0 and c > 0 such that

∫ t+T
t

yT(τ)y(τ)dτ ≥
cIm×m.

Definition 2 (Persistent Excitation, PE) [31]: A bounded
signal y(·) : R → Rn×m is said to be persistently exciting
if there exist positive constants c and T such that for arbitrary
t ≥ 0, one has

∫ t+T
t

yT(τ)y(τ)dτ ≥ cIm×m.

Assumption 1: Consider an auxiliary variable defined by φ =
$/($T$ + 1), it satisfies a FE condition, i.e., there exist
tw1, tw2, cw with 0 ≤ tw1 ≤ tw2 ≤ t and cw > 0 such that∫ tw2

tw1
φ(τ)φT(τ)dτ ≥ cwIp×p.

Assumption 2: For x ∈ X , there exist positive constants bσ ,
b∇σ , bε, b∇ε and bεH , such that ‖σ‖ ≤ bσ , ‖∇σ‖ ≤ b∇σ ,
‖ε‖ ≤ bε, ‖∇xε‖ ≤ b∇ε and ‖εH/($T$ + 1)‖ ≤ bεH .

Note that Assumption 1 is mild and it is much weaker
than the conventional PE conditions that are required in
many RL-based controllers such as [19], [20], [22]. Moreover,
Assumption 2 is a standard assumption in relevant research.

Then we define the following auxiliary variable:

Φ(t, tw2, tw1) = φ1(tw2, tw1)Ŵc(t) + φ2(tw2, tw1) (22)

with

φ̇1(t, tw1) = −κφ1(t, tw1) + ϕ1(t), φ1(tw1) = 0p×p (23)

φ̇2(t, tw1) = −κφ2(t, tw1) + ϕ2(t), φ2(tw1) = 0p×1 (24)

and here ϕ1 = φφT and ϕ2 = hφ/($T$ + 1) are employed
for ease of notation, and κ is a positive constant. Substituting
the solutions of (23) and (24) into the definition of Φ yields

Φ(t, tw2, tw1) =

∫ tw2

tw1

eκ(τ−tw2)(ϕ1(τ)Ŵc(t) + ϕ2(τ))dτ

= φ1(tw2, tw1)W̃c(t) + εΦ.
(25)

Notice φ1(tw2, tw1) =
∫ tw2

tw1
e−κ(tw2−τ)φ(τ)φT(τ)dτ , it

“stores” the information of φ throughout the time in-
terval [tw1, tw2]. Under the assumption that φ satisfies
an FE condition, we have φ1(tw2, tw1) ≥ cΦIm×m,
and here cΦ = e−κ(tw2−tw1)cw. Besides, εΦ =∫ tw2

tw1
(e−κ(tw2−τ)φεH/($

T$ + 1))dτ is the residual error
vector, and it is a constant for a fixed time interval [tw1, tw2].

The employment of Φ, φ1, and φ2 can greatly benefit the
design of the update laws of Ŵc and Ŵa. However, since φ1

is positive-definite only after adequate data is collected online
(i.e. the FE condition of φ must be satisfied), how to guarantee
the boundedness and handle the state constraints during this
data collection process should be addressed first. To this end
and motivated by the results given in [20], [22], [32], a solution
is given in following lemma.

Lemma 1: Consider the attitude model in (10), and the
actor-critic architecture described in (18) and (19). Design the
weight update laws (with satisfying Assumption 2) to be

˙̂
Wc = −c $(t)δb(t)

($T(t)$(t) + 1)2
(26)

˙̂
Wa = −(a1Ŵa − a2φφ

TŴc) (27)

where c, a1, and a2 are positive constants. Then for all qe(0) ∈
D and ωbb(0) ∈ F, one has qe, ωbb , W̃c and W̃a are ultimately
bounded. Besides, the barrier functions Va and Vω are also
bounded.

Proof : See Appendix A.
Lemma 1 guarantees an admissible online data collection

process. Then, once adequate data is collected (i.e. φ satis-
fies an FE condition), the following critic-only structure can
replace the actor-critic controller given in Lemma 1.
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Theorem 1: Consider the attitude model in (10) and the RL-
based control framework described in (18) and (19). Under
Assumptions 1 and 2, design the weight update laws to be

˙̂
Wc(t) = −c1

$(t)δb(t)

($T(t)$(t) + 1)2
− c2Φ(t, tw2, tw1) (28)

Ŵa(t) = Ŵc(t) (29)

where c1 and c2 are positive constants. Then, for all qe(0) ∈ D
and ωbb(0) ∈ F, one has qe, ωbb , and W̃ are UB, and Va, Vω ∈
L∞.

Proof : Consider the following storage function for the critic-
only architecture proposed in Theorem 1:

L = V ∗ +
ρc
2
W̃T
c W̃c (30)

where the positive constant ρc is employed just for analysis
purpose. Then substituting (13), (19), and (28) into the time
derivative of L yields

L̇ =∇T
xV
∗(f + gu) + ρcW̃

T
c

˙̃Wc

=∇T
xV
∗(f + gu∗) + ρcW̃

T
c

˙̃Wc +∇T
xV
∗(gu− gu∗)

=∇T
xV
∗(f + gu∗) + ρcW̃

T
c

˙̃Wc

− 1

2
(WT∇T

xσ +∇T
x ε)gR

−1gT(∇xσW̃c −∇xε)

≤− r − Va − Vω +
1

2
W̃T
c DW̃c + ρcW̃

T
c

˙̃Wc + εL1

≤− (qe − qI)TQq(qe − qI)− (ωbb)
TQωω

b
b − Va

− Vω − W̃T
c CW̃c + εL1 + εL2

(31)

where C = 0.5[ρcc1φφ
T + ρcc2cΦIp×p − D], εL1 =

0.5∇T
x εgR

−1gT∇xε, and εL2 = 0.5ρcc1‖εH‖2/($T$ +
1)2 + 0.5ρcc2‖εΦ‖2/cΦ. By Assumption 2, one has eL1, eL2,
and ‖D‖ are bounded. Thus one has C > 0 by setting
ρc > bD/(c2cΦ), where bD is the upper bound of ‖D‖. On
this basis, the result in (31) indicates qe− qI , ωbb , and W̃c are
uniformly bounded, and Va, Vω ∈ L∞. The proof is complete.

Remark 2: Conventional RL-based controllers, especially
online actor-critic architectures (e.g., [20], [32], [22]), usu-
ally require PE conditions to ensure the convergence of the
estimation errors of NN weights. This is also indicated by
the result given in Lemma 1. The term −W̃T

c φφ
TW̃c in

the proof of Lemma 1 implies that W̃c could converge to
zero only if φ satisfies the PE condition. However, the PE
condition is typically strong, and it is impractical for the
attitude reorientation problems considered in this paper, given
the fact that φ→ 0p×1 when x→ 07×1. Therefore, though the
actor-critic architecture in Lemma 1 can meet the boundedness
requirement, it may lead to severe performance degradation.
To address this issue, a novel critic-only learning architecture
is proposed in Theorem 1. By employing a specially designed
information matrix Φ, both real-time data and past measure-
ments are employed in the controller. This design not only
simplifies the whole control structure, but also relaxes the
excitation condition (for convergence) from PE to FE.

Remark 3: It should be emphasized that the idea of em-
ploying past measurements to relax the PE condition is in-
spired by the concurrent learning method [24], [25] and its

extensions/applications [26], [27] in the RL community. But
these elegant results lack the constraint handling abilities.
This essential problem is addressed in our paper by designing
special barrier functions. Besides, in these elegant results,
discrete historical data stacks are employed to collect past
measurements:

∑l
i=1 φ(i)δb(i)/($

T(i)$(i)+1), where δb(i)
denotes the Bellman error given in (21) at a past (discrete)
time point i while replacing Ŵ (i) with its real-time coun-
terpart. However, this design needs to employ complicated
algorithms for data selection purposes, and the complexity of
such algorithms grows significantly with the increase of the
total number of basis functions. In contrast, the integral-form
data collecting structure in (22) to (24) can take full use of
the incoming data, which is arguably easier to implement and
computationally much cheaper.

Remark 4: In Theorem 1, we show that system states
converge to a residual set whose size is related to εL1 and εL2.
We want to emphasize that this residual set shrink significantly
with the convergence of x. Besides, to potentially reduce the
residual error further, the information matrix Φ(t, tw2, tw1)
can be updated to Φ(t, t̄w2, t̄w1) if φ also satisfies the FE
condition on a new time interval [t̄w1, t̄w2]. This is because
the convergence of x and W̃c can potentially render a smaller
‖εΦ‖ on the new interval [t̄w1, t̄w2].

IV. NUMERICAL SIMULATIONS AND HARDWARE-IN-LOOP
EXPERIMENTS

A. Numerical Simulation Results

Numerical simulation results are given in this sec-
tion to show the effectiveness and advantages of the
proposed method. Consider a rigid body with J =
[20, 0, 0; 0, 17, 0; 0, 0, 15] kg·m2. Its initial attitude is qb(0) =
[0.3062, 0.4356,−0.6597,−0.5303]T with ωbb(0) = 03×1

rad/s. Assuming a sensitive payload is fixed on the rigid body,
and its boresight vector coincides with the z-axis of the frame
Fb, thus αb1 = [0, 0, 1]T. The control objective is to reorient
the frame Fb to be consistent with Fr, so we have qd = qI
and qe = qb.

During the reorientation process, there are four atti-
tude constraint zones that are required to be avoided:
1) β11 = [−0.9245, 0.0925, 0.3698]T, θ11 = 18◦; 2)
β12 = [−0.4602,−0.2761, 0.8438]T, θ12 = 20◦, 3)
β13 = [−0.7071,−0.7071, 0]T, θ13 = 20◦, and 4) β14 =
[−0.7071, 0.7071, 0]T, θ14 = 18◦. Please note β11 to β14

are expressed in Fr. Besides, the maximum angular velocity
is set to be ωmax,i = 0.3 rad/s, i = 1, 2, 3. The cost
function follows: γ11 = 0.4, γ12 = 0.6, γ13 = 0.2,
γ14 = 0.2, γω = 10, Qq = I4×4, Qω = 10I3×3, and
R = 20I3×3. A PD-like controller with kp = 0.05 and
kd = 1.5 is employed as the initial control policy for the
RL-based controller (denoted by RLC) proposed in this paper.
To straightforwardly show the learning ability of RLC, we
choose σ = [ξe1ω

b
b1, ξe2ω

b
b2, ξe3ω

b
b3, (ω

b
b1)2, (ωbb2)2, (ωbb3)2]T.

Thus the proposed method can keep the same structure with
the PD-like control method, helping to illustrate whether it can
bring a conventional controller the essential optimizing and
constraint handling abilities in an online pattern. Accordingly,
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(a) Simulation results of the PD-like controller
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(b) Simulation results of the RLCWBF method (c) 3D illustration 1

Figure 2: Simulation results of the PD-like controller and the RLCWBF method
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Figure 3: Simulation results of the APFC and the MPC
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Figure 4: Simulation results of RLC



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

Total 0s-20s 20s-50s 50s-300s
Time intervals

0

50

100

150

200

250
V

c
PD
RLC
APFC
MPC

Figure 5: Simulation results of Vc under different controllers

one has Ŵc(0) = Ŵa(0) = [2, 2, 2, 30, 30, 30]T, and other
control gains are set to be: κ = 0.1, a1 = 0.05, a2 = 0.1,
c1 = 3, and c2 = 0.3. Besides, under the actor-critic structure
in Lemma 1, φ1 becomes full-rank after 3.1s. Based on that,
the data in the first 5s (tw1 = 0 and tw2 = 5) is employed to
build Φ, and this matrix is released (set Φ to be a zero matrix)
later to reduce the residual error.

For comparison purposes, some other attitude reorientation
controllers are also employed in simulations: 1) The AP-based
feedback controller in [10] (denoted by APFC), which also
considers both attitude constraints and angular-velocity limits.
Its parameters are set to be: k = 0.05, α = 1/30, k1 = 2Υ−1,
and k2 = 0.004. 2) An RL-based controller without barrier
functions (denoted by RLCWBF). This controller keeps the
same structures and parameters as the proposed method, while
no barrier functions are introduced into the cost function. It
is employed to show the effectiveness of barrier functions and
illustrate the constraint handling abilities of RLC. 3) The PD-
like controller: u = −kpξe − kdωbb with kp = 0.05 and kd =
1.5. This is the initial control policy of RLC. It is employed
to illustrate the learning ability of the RLC method proposed
in this paper. 4) The nonlinear MPC controller in [14], which
also has optimizing and constraint handling abilites. Please
refer to [14] for the specific design of this controller. The time
step of MPC is set to be 0.4s, and other parameters include:
P1 = Q1 = 4I3×3, P2 = Q2 = 0.25I3×3, and Q3 = I3×3.

Based on all these settings, time responses of system states
under the PD-like controller and RLCWBF are illustrated in
Figs. 2a and 2b, respectively. Due to the online learning ability
of RLCWBF, it has an improved closed-loop performance
and faster convergence process compared with the PD-like
controller. Besides, a three-dimensional (3D) illustration is
provided in Fig. 2c to show the reorientation trajectories of
the boresight vector αb1 = [0, 0, 1]T in the frame Fr. In this
figure, the axes of Fr are denoted by mutually perpendicular
lines, and the attitude forbidden zones are illustrated by cones.
One can see that though the PD-like controller and RLCWBF
can achieve the reorientation objective, they both violate the
attitude constraints. Distinct with PD and RLCWBF, the APFC
in [10] and the MPC in [14] avoid the violation of all under-

lying state constraints during the whole reorientation process,
as illustrated in Figs. 3a to 3c. Please note that the bounds of
ωbb are indicated by dashed lines. Then, simulation results of
RLC are given in Fig. 4. Specifically, the time responses of
qe, ωbb , and u are in Fig. 4a; the time response of Ŵc is in
Fig. 4b; and a 3D illustration which contains the trajectories
of not only RLC but also APFC and MPC is provided in Fig.
4c. From Fig. 4c, one can see that RLC, APFC, and MPC
can achieve control objectives while obeying all underlying
constraints. Besides, RLC has smoother trajectories and less
fluctuations than MPC and APFC.

To quantitatively compare the performance of different con-
trollers, we define a new cost function: Vc = (qe−qI)TQq(qe−
qI) + (ωbb)

TQωω
b
b + uTRu, which can show the overall cost

of different controllers without considering state constraints.
The simulation results of Vc under PD, RLC, APFC, and
MPC are given in Fig. 5. One can see that the proposed RLC
method shows effective optimizing abilities. It has a significant
lower cost when compared with APFC (reduced by 84%), PD
(reduced by 38%), and also MPC (reduced by 34%).

The computational complexity of different controllers is also
worth to be analyzed. For the simulation scenario here, RLC
only needs 4.096466 seconds to complete a simulation of 300
seconds (under a computer with Intel Core i7-8565U CUP @
1.80GHz, 16GB RAM). In contrast, MPC needs to numerically
solve a sub-optimal control problem at every time step (every
0.4s), which renders a much higher computational complexity.
It requires 279.1197s to finish the 300-second simulation
under the same computation conditions with RLC. Besides, the
simulation time of PD and APFC is 0.972631s and 2.862144s,
respectively. These results indicate that though RLC renders a
higher computational complexity than conventional feedback
controllers (PD and APFC), the additional cost is acceptable
and much less than some other sub-optimal controllers (MPC).

B. Hardware-in-Loop Experimental Results
To test the performance of the proposed RL-based controller

under disturbances and noisy measurements, hardware-in-loop
(HL) experiment is conducted in this subsection. The HL
testbed is demonstrated in Fig. 6, which contains: 1) A triaxial
turntable. It can simulate the attitude motion of spacecraft
in real time; a raster and a gyroscope are equipped with
the turntable to respectively measure the Euler angles and
angular velocities, providing state measurements (qb and ωbb ,
where Euler angles are transferred to unit quaternions) to the
controller. 2) A high-reliability real-time simulation computer
(HRSC). It collects the sensor outputs and calculates the
control command signal u. Then a control allocation algorithm
is carried out based on the the configuration of reaction wheels;
the resulting control command (τ̂cmd) is transferred to the
underlying controller. 3) An ARM-based underlying control
PCB. It receives the control command from HRSC, then
implements these signals (τcmd) to reaction wheels via RS-
422. 4) Four reaction wheels, serving as actuator simulators.
They provide the final control signal τc (i.e., u in Eq. (2))
to the simulated attitude dynamic in the simulation computer.
Moreover, a weighted pseudo-inverse algorithm [33] is em-
ployed for control allocation.
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Figure 7: Experimental results of MPC and RLC
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Figure 8: Experiment results of Vc under RLC and MPC

The time step of the testbed is set to be 0.05s. By employing
this HL testbed, practical measurement noise of states and
disturbances of control signals are inevitably introduced into
the closed-loop system. Besides, the turntable has two main
physical restrictions: 1) the maximum output of the reaction
wheels is 0.1Nm with slopes no larger than 0.01Nm/s; 2)
the rotational degree-of-freedom of the Y -axis is [−90◦, 90◦]
(it has singularities at ±90◦ on this direction). Given these
restrictions, the simulation scenario in Sec. IV-A is modi-
fied as follows: 1) For safety concerns, the allowable maxi-
mum angular velocity is reduced to be ωmax,i = 0.06rad/s,
i = 1, 2, 3; 2) To reduce the computational complexity of
MPC, only a single attitude forbidden zone is considered,
with β11 = [−0.1761, 0.4402, 0.8805]T, θ11 = 15◦, and
γ11 = 6; 3) The initial attitude is changed to be qb(0) =
[0.7762,−0.4858,−0.3728,−0.15]T. All the other settings are
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kept same with Sec. IV-A.
The two sub-optimal controllers that have constraint han-

dling abilities, i.e. MPC and RLC, are employed to carry
out experiments; the results are given in Figs. 7a to 7c.
One can see that, even in the presence of disturbances and
noisy measurements, RLC and MPC can still achieve the
reorientation goal with high precision. For this experimental
case, MPC renders a shorter convergence trajectory (see Fig.
7c) but a longer convergence time (see Figs. 7a and 7b).
Moreover, the experiment results of Vc under RLC and MPC
are given in Fig. 8. One can see that RLC still has a better
performance and renders a lower overall cost.

In summary, simulation and experiment results show that the
RLC method proposed in this paper has the ability to make a
trade-off between performance and control cost and to handle
underlying state constraints. It can address the drawbacks
of MPC and APFC while keeping their advantages. Table I
summaries the features of APFC, MPC, and RLC, based on
both theoretical analysis and simulation & experiment results.
But a limitation of the RLC in the present paper is the lack
of control constraint handling abilities. This issue will be
explored in the future research.

Table I: Features of Different Controllers

APFC in [10] MPC in [14] RLC in
this paper

State Constraint
√ √ √

Online Complexity
√

(Low) × (High)
√

(Low)
Optimizing Ability ×

√ √

Control Constraint ×
√

×

V. CONCLUSIONS

A reinforcement-learning based controller for attitude reori-
entation control problems under multiple state constraints was
proposed in this paper. Specially designed barrier functions
were introduced into the cost function to encode the informa-
tion of attitude forbidden zones and angular-velocity limits.
Then an online RL-based control scheme was developed
to ensure the convergence of NN weights and reorientation
errors, with guaranteed constraint handling abilities during the
whole online learning process. Besides, a simplified critic-
only neural network was designed to replace the conventional
actor-critic structure once adequate data was collected online.
Both numerical simulations and experimental tests verified the
effectiveness and advantages of the proposed method. Future
work in this direction will consider system uncertainties and
control constraints.

APPENDIX

A. Proof of Lemma 1

Consider the following storage function:

Lac = V ∗ +
ρ1

2
W̃T
c W̃c +

ρ2

2
W̃T
a W̃a (32)

where ρ1, ρ2 > 0 are constants which are employed just for
analysis purpose. Substituting (13) into the time derivative of

Lac and employing the arithmetic-geometric average inequal-
ity (AGAI), one has

L̇ac =∇T
xV
∗(f + gu) + ρ1W̃

T
c

˙̃Wc + ρ2W̃
T
a

˙̃Wa

=∇T
xV
∗(f + gu∗) + ρ1W̃

T
c

˙̃Wc + ρ2W̃
T
a

˙̃Wa

− 1

2
(WT∇T

xσ +∇T
x ε)gR

−1gT(∇xσW̃a −∇xε)

≤− r − Va − Vω +
1

2
W̃T
a DW̃a + εL1

+ ρ1W̃
T
c

˙̂
Wc + ρ2W̃

T
a

˙̂
Wa

(33)
where εL1 = 0.5∇T

x εgR
−1gT∇xε. Substituting (21), (26) and

(27) into (33) and employing AGAI again yields

L̇ac ≤− r − Va − Vω +
1

2
W̃T
a DW̃a + εL1

− ρ1c

2
W̃T
c φφ

TW̃c +
ρ1c‖εH‖2

2($T$ + 1)2

− ρ2W̃
T
a [a1(W̃a +W )− a2φφ

T(W̃c +W )]

≤− (qe − qI)TQq(qe − qI)− (ωbb)
TQωω

b
b − Va

− Vω − W̃T
c φΛcφ

TW̃c − W̃T
a ΛaW̃a + εa

(34)

where Λc = (1/2)ρ1c− 2ρ2a2, Λa = [(1/4)ρ2a1 − (1/2)D],
and εa = ρ1c‖εH‖2/(2($T$ + 1)2) + (1/2)ρ2a1W

TW +
2ρ2a2W

TW + εL1. Please note the fact ‖φ‖ < 1 is employed
in (34). Thus, one has Λa,Λc > 0 by setting

ρ1 > 4ρ2a2/c, ρ2 > 2bD/a1

and here bD = maxt≥0{D(t)}, which is bounded under
Assumption 2. On this basis, Eq. (34) indicates that qe −
qI , ω

b
b , W̃c, W̃a, Va, Vω ∈ L∞. This completes the proof.
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