77 research outputs found
Quercus texana ‘Jin Fen Shi Jia’: A New Colored Landscape Tree
Quercus L. is an important tree of the family Fagaceae, and widely distributed in Asia, Africa, Europe, and the Americas (Jiang et al. 2019). There are ∼500 species, which can be generally divided into two subgenera and eight sections (Chassé 2018). The section Lobatae is naturally distributed in North America, Central America, and Colombia in South America. There are reports of breeding horticultural cultivars from tree species of this section in Europe and the United States. These cultivars include different leaf colors and tree shapes, such as Quercus coccinea ‘Splendens’, Quercus palustris Pacific Brilliance™ ‘PWJR08’ (bright red leaves in autumn), Quercus texana ‘New Madrid’ (red leaves in spring), Quercus rubra ‘Aurea’ (yellow leaves in spring), Q. texana Highpoint® ‘QNFTA’, Q. palustris Green Pillar® ‘Pringreen’ and Quercus phellos Hightower® ‘QPSTA’ (have narrow crown and are densely branched), and Q. palustris ‘Green Dwarf’ (low tree-shape) (Iqbal et al. 2017; Lancaster 1977; Russell et al. 2021; Torres-Miranda et al. 2011). Q. texana, also known as Nuttall’s oak, is a medium-sized deciduous tree with rapid growth, strong adaptability, and high ornamental value (Costello et al. 2011). It belongs to the section Lobatae, which are native to the Mississippi River Basin in the southeastern United States (Barrón et al. 2017; Manos et al. 1999; Sargent 1918). The trunk of Q. texana is upright with a tower-shaped crown. The leaves of Q. texana are simple, with lobed and toothed margins, broad and rounded lobes, and leaf length of 10 to 15 cm. The leaves are green and give dense shade in summer, and then turn bright red or reddish-brown in autumn; the leaves remain until late in the year on the twigs. Q. texana is commonly used for landscaping purposes and timber production, fuel wood, firewood, and charcoal. The species is known for its straight grain, resistance to fungal decay, and overall durability, making it a desirable species for industrial applications such as flooring, paneling, and furniture (Wang et al. 2022).
This species is often chosen for landscape applications because of its adaptable nature, rapid growth rate, and beautiful foliage. In recent years, researchers have been working to produce improved cultivars of Q. texana, and various new cultivars have been created with enhanced characteristics such as greater biotic and abiotic resistance, improved growth rate, and desirable foliage shapes and colors.
In China, some institutes have conducted systematic research since the 1990s on the introduction and cultivation of Q. texana. After screening, we selected some cultivars and provenances with good growth and strong adaptability (Chen et al. 2013). Now there are five cultivars of Q. texana authorized by the National Forestry and Grassland Administration (China): cultivars Yan Yu (red leaves in autumn), Long Xiang No. 7 and Long Xiang No. 10 (yellow leaves in spring), and Long Xiang No. 3 and Long Xiang No. 8 (red leaves in spring). The new cultivars possess excellent ornamental features and provide more options in landscape applications
Corrigendum to “Metabolic Syndrome, Inflammation, and Cancer”
Corrigendum to the article titled “Metabolic Syndrome, Inflammation, and Cancer”
Lactate, a Neglected Factor for Diabetes and Cancer Interaction
Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate's role in different biological characteristics of diabetes and cancer and interactive relationship between them. Understanding the molecular mechanisms behind metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for diabetes and cancer treatment
A survey of localization in wireless sensor network
Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
Increased Glycogen Synthase Kinase-3β and Hexose-6-Phosphate Dehydrogenase Expression in Adipose Tissue May Contribute to Glucocorticoid-Induced Mouse Visceral Adiposity
BACKGROUND Increased adiposity in visceral depots is a crucial feature associated with glucocorticoid (GC) excess. The action of GCs in target tissue is regulated by GC receptor (GR) and 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6pdh). Glycogen synthase kinase-3β (GSK3β) is known to be a crucial mediator of ligand-dependent gene transcription. We hypothesized that the major effects of corticosteroids on adipose fat accumulation are in part medicated by changes in GSK3β and H6pdh. METHODS We characterized the alterations of GSK3β and GC metabolic enzymes, and determined the impact of GR antagonist mifepristone on obesity-related genes and the expression of H6pdh and 11ß-HSD1 in adipose tissue of mice exposed to excess GC as well as in in vitro studies using 3T3-L1 adipocytes treated with GCs. RESULTS Corticosterone (CORT) exposure increased abdominal fat mass and induced expression of lipid synthase ACC and ACL with activation of GSK3β phosphorylation in abdominal adipose tissue of C57BL/6J mice. Increased pSer9 GSK3β was correlated with induction of H6pdh and 11ß-HSD1. Additionally, mifepristone treatment reversed the production of H6pdh and attenuated CORT-mediated production of 11ß-HSD1 and lipogenic gene expression with reduction of pSer9 GSK3β, thereby leading to improvement of phenotype of adiposity within adipose tissue in mice treated with excess GCs. Suppression of pSer9 GSK3β by mifepristone was accompanied by activation of pThr308 Akt and blockade of CORT-induced adipogenic transcriptor C/EBPα and PPARγ. In addition, mifepristone also attenuated CORT-mediated activation of IRE1α/XBP1. Additionally, reduction of H6pdh by shRNA showed comparable effects to mifepristone on attenuating CORT-induced expression of GC metabolic enzymes and improved lipid accumulation in vitro in 3T3-L1 adipocytes. CONCLUSION These findings suggest that elevated adipose GSK3β and H6pdh expression contribute to 11ß-HSD1 mediating hypercortisolism associated with visceral adiposity
Rare microbial taxa as the major drivers of nutrient acquisition under moss biocrusts in karst area
Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions
Activation of the AMP-Activated Protein Kinase by Eicosapentaenoic Acid (EPA, 20:5 n-3) Improves Endothelial Function In Vivo
The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo
- …