15 research outputs found

    A Civil Aircraft Cockpit Layout Evaluation Method Based on Layout Design Principles

    No full text
    As technology continues to leap forward and innovations advance, the systems of civil aircraft are becoming increasingly sophisticated and complex. Accordingly, there is a rising amount of information to be processed by pilots in the cockpit, increasing their cognitive burden, which significantly threatens the safety of flight. Thus, designers have formulated cockpit layout principles relating to importance, frequency of use, functional grouping, and operation sequence on the basis of ergonomics, which can effectively reduce the cognitive burden for pilots. The degree to which the cockpit layout of a model conforms to the four design principles can indicate its ergonomic design level. In accordance with the concepts of the above four cockpit layout principles, evaluation methods for determining their respective conformity to the four design principles were proposed in this paper. These methods use the operational sequence of cockpit system controls used in the normal flight mission of the actual aircraft type as the evaluation data source. Subsequently, the total evaluation results for cockpit layout were obtained using the weighted accumulation method. Lastly, the process for evaluating the cockpit layouts of civil aircraft was illustrated using the cockpits of the A320 series and B737NG series as examples. Based on the final evaluation results, the feasibility and effectiveness of the proposed evaluation method was verified

    Electrospinning-derived “Hairy Seaweed” and its photoelectrochemical properties

    No full text
    Highly porous three-dimensional (3D) hierarchical nanostructures suspended in aqueous media were facilely prepared via electrospinning of polyacrylonitrile (PAN)/indium tin oxide (ITO) nanofibers and collection of the hybrid nanofibers by water, followed by hydrothermally growing ZnO nanorods from the nanofibers. The large inter-fiber distances facilitated the uniform growth of the ZnO nanorods throughout the whole system. The suspended PAN/ITO nanofibers process excellent light trapping capability due to their centimeter-sized dimensions and hence large light penetration path. This significantly increases the probability of multiple-reflections, leading to high absorption with almost zero transmission when the size of the sample reaches 10 mm in the direction parallel to incident light. High photocurrent was generated when the nanorods-on-nanofibers was used as a photoanode. The high photocurrent density generated by the anode can be attributed to its excellent light-trapping capability brought by the large amount of interaction sites between the ZnO nanorods and light, its large contact area with electrolyte, as well as the conduction path constructed by high-content ITO nanoparticles.Accepted versio

    A temporal gradient of cytonuclear coordination of chaperonins and chaperones during RuBisCo biogenesis in allopolyploid plants

    Get PDF
    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) has long been studied from many perspectives. As a multisubunit (large subunits [LSUs] and small subunits[SSUs]) protein encoded by genes residing in the chloroplast (rbcL) and nuclear (rbcS) genomes, RuBisCo also is a model for cytonuclear coevolution following allopolyploid speciation in plants. Here, we studied the genomic and transcriptional cytonuclear coordination of auxiliary chaperonin and chaperones that facilitate RuBisCo biogenesis across multiple natural and artificially synthesized plant allopolyploids. We found similar genomic and transcriptional cytonuclear responses, including respective paternal-to-maternal conversions and maternal homeologous biased expression, in chaperonin/chaperon-assisted folding and assembly of RuBisCo in different allopolyploids. One observation is about the temporally attenuated genomic and transcriptional cytonuclear evolutionary responses during early folding and later assembly process of RuBisCo biogenesis, which were established by long-term evolution and immediate onset of allopolyploidy, respectively. Our study not only points to the potential widespread and hitherto unrecognized features of cytonuclear evolution but also bears implications for the structural interaction interface between LSU and Cpn60 chaperonin and the functioning stage of the Raf2 chaperone.This article is published as Li, Changping, Baoxu Ding, Xintong Ma, Xuan Yang, Hongyan Wang, Yuefan Dong, Zhibin Zhang et al. "A temporal gradient of cytonuclear coordination of chaperonins and chaperones during RuBisCo biogenesis in allopolyploid plants." Proceedings of the National Academy of Sciences 119, no. 34 (2022): e2200106119. doi:10.1073/pnas.2200106119. Posted with permission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND)

    Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus)

    No full text
    Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.This article is published as Zhang, Keren, Juzuo Li, Guo Li, Yue Zhao, Yuefan Dong, Ying Zhang, Wenqing Sun et al. "Compensatory genetic and transcriptional cytonuclear coordination in allopolyploid lager yeast (Saccharomyces pastorianus)." Molecular Biology and Evolution 39, no. 11 (2022): msac228. doi:10.1093/molbev/msac228. Posted with permission.This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited

    TET2 is required to suppress mTORC1 signaling through urea cycle with therapeutic potential

    No full text
    Abstract Tumor development, involving both cell growth (mass accumulation) and cell proliferation, is a complex process governed by the interplay of multiple signaling pathways. TET2 mainly functions as a DNA dioxygenase, which modulates gene expression and biological functions via oxidation of 5mC in DNA, yet whether it plays a role in regulating cell growth remains unknown. Here we show that TET2 suppresses mTORC1 signaling, a major growth controller, to inhibit cell growth and promote autophagy. Mechanistically, TET2 functions as a 5mC “eraser” by mRNA oxidation, abolishes YBX1–HuR binding and promotes decay of urea cycle enzyme mRNAs, thus negatively regulating urea cycle and arginine production, which suppresses mTORC1 signaling. Therefore, TET2-deficient tumor cells are more sensitive to mTORC1 inhibition. Our results uncover a novel function for TET2 in suppressing mTORC1 signaling and inhibiting cell growth, linking TET2-mediated mRNA oxidation to cell metabolism and cell growth control. These findings demonstrate the potential of mTORC1 inhibition as a possible treatment for TET2-deficient tumors

    Cell type–specific cytonuclear coevolution in three allopolyploid plant species

    No full text
    Cytonuclear disruption may accompany allopolyploid evolution as a consequence of the merger of different nuclear genomes in a cellular environment having only one set of progenitor organellar genomes. One path to reconcile potential cytonuclear mismatch is biased expression for maternal gene duplicates (homoeologs) encoding proteins that target to plastids and/or mitochondria. Assessment of this transcriptional form of cytonuclear coevolution at the level of individual cells or cell types remains unexplored. Using single-cell (sc-) and single-nucleus (sn-) RNAseq data from eight tissues in three allopolyploid species, we characterized cell type–specific variations of cytonuclear coevolutionary homoeologous expression and demonstrated the temporal dynamics of expression patterns across development stages during cotton fiber development. Our results provide unique insights into transcriptional cytonuclear coevolution in plant allopolyploids at the single-cell level.This article is published as Zhang, Keren, Xueru Zhao, Yue Zhao, Zhibin Zhang, Zhijian Liu, Ziyu Liu, Yanan Yu et al. "Cell type–specific cytonuclear coevolution in three allopolyploid plant species." Proceedings of the National Academy of Sciences 120, no. 40 (2023): e2310881120. doi:10.1073/pnas.2310881120. Copyright © 2023 the Author(s). Posted with permission.This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND)

    Electrospinning-Derived “Hairy Seaweed” and Its Photoelectrochemical Properties

    No full text
    Highly porous three-dimensional (3D) hierarchical nanostructures suspended in aqueous media were facilely prepared via electrospinning of polyacrylonitrile (PAN)/indium tin oxide (ITO) nanofibers and collection of the hybrid nanofibers by water, followed by hydrothermally growing ZnO nanorods from the nanofibers. The large interfiber distances facilitated the uniform growth of the ZnO nanorods throughout the whole system. The suspended PAN/ITO nanofibers process excellent light trapping capability due to their centimeter-sized dimensions and hence large light penetration path. This significantly increases the probability of multiple-reflections, leading to high absorption with almost zero transmission when the size of the sample reaches 10 mm in the direction parallel to incident light. High photocurrent was generated when the nanorods-on-nanofibers was used as a photoanode. The high photocurrent density generated by the anode can be attributed to its excellent light-trapping capability brought by the large amount of interaction sites between the ZnO nanorods and light, its large contact area with electrolyte, as well as the conduction path constructed by high-content ITO nanoparticles
    corecore