121 research outputs found

    Correlation between porosity, amorphous phase and CMAS corrosion behaviour of LaMgAl11O19 thermal barrier coatings

    Get PDF
    Calcium-magnesium-alumino-silicate (CMAS) attack is one of the significant failure mechanisms of thermal barrier coatings (TBCs), which can facilitate TBC’s degradation at elevated temperatures. To clarify the correlation between the porosity, CMAS corrosion behaviour, lanthanum magnesium hexaluminate (LaMgAl11O19, LMA) TBCs were prepared by atmospheric plasma spraying (APS) and then heat-treated at 1173K and 1523K, respectively. For comparison, LMA tablets were prepared by mechanical and cold isostatic pressing. CMAS attack at 1523K was carried out both for LMA tablets and LMA coatings. Their microstructure, phase composition, and crystallization behavior after CMAS attack were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction as well as differential scanning calorimetry (DSC). The results indicated that CMAS attack was arrested for LMA tablets due to the formation of a dense crystalline layer induced by the chemical interactions between LMA and CMAS glass, while the as-sprayed LMA coatings were completely penetrated by molten CMAS due to the presence of amorphous phase and connected pores. Although the isothermal heat-treatment promoted a crystallization of LMA coatings, much vertical cracks formed during heat-treatment. The heat-treated LMA coatings suffered a severer CMAS attack than the as-sprayed one, since the vertical cracks inevitably provided efficient infiltration paths for molten CMAS

    Thermal barrier coatings on polymer materials

    Get PDF
    Polyimide matrix composite (PIMC) has been widely used to replace metallic parts due to its low density and high strength. It is considered as an effective approach to improve thermal oxidation resistance, operation temperature and lifetime of PIMC by depositing a protection coating. The objective of the research was to fabricate a series of thermal barrier coatings (TBCs) on PIMC by a combined sol-gel/sealing treatment process and air plasma spraying (APS). By optimizing the experimental parameters, thermal shock resistance, thermal oxidation resistance and thermal ablation resistance of PIMC could be improved significantly. The ZrO2 sol was prepared by sol-gel process and the effects of the different organic additions on phase structure, crystallite size and crystal growth behavior of the ZrO2 nanocrystallite were investigated. The addition of HAc and DMF were beneficial to decrease the crystallite size and alter the activation energy for crystal growth, further inducing the crystallization of ZrO2 nanocrystallite at low temperature (300ºC) and the stability of tetragonal ZrO2 at 600ºC. Based on the optimized parameters of the sol preparation, the ZrO2/phosphates duplex coating was fabricated on PIMC via a combined sol-gel and sealing treatment process. The sealing mechanism of the phosphates in the duplex coating was primarily attributed to the adhesive binding of the phosphates and the chemical bonding between the sealant and the coating. It was demonstrated that the duplex coating exhibited excellent thermal shock resistance and no apparent delamination or spallation occurred. Relatively, the duplex coating with the thickness of 150 μm provided excellent thermal oxidation and thermal ablation resistance for the polymer substrate. However, the presence of cracks and delamination in the coatings provided the channels for oxygen diffusion, causing the final failure of the protection coating. Figure 4 – TBCs on CFPI The Zn/YSZ and Al/YSZ coating systems were successfully deposited on PIMC by APS. Metals with comparatively low melting point as the bond coats (Cu, Al, Zn) were beneficial to increase thermal shock resistance of the coating systems. In comparison with the Al/YSZ coating system, the Zn/YSZ coating exhibited the better thermal shock resistance, which was ascribable to the lower residual stress in the Zn layer after deposition and the lower thermal stress induced during thermal shock test. For these coatings, the increase in surface toughness of the substrate as well as the decrease in thickness of metal layer favored the improvement of thermal shock resistance of the coatings. With the temperature increases, thermal shock lifetime of the coatings decreased disastrously. However, the difference was that the slight increase of the thickness of YSZ layer favored the increase in thermal shock resistance of the Al/YSZ coatings, while for the Zn/YSZ coating systems the increase in the thickness of YSZ layer made thermal shock resistance weaken. Owing to the protection of Zn/YSZ and Al/YSZ coating systems, the time for 5 wt% weight loss of the sample was prolonged from 16 h to 50 h when oxidation at 400ºC; as the oxidation temperature increased to 450ºC, the time for 5wt% weight loss was extended from 5 h to 13 h. By depositing different coatings, the anti-ablation property of PIMC was significantly improved. During property testing, the formation of cracks and delamination in the coating and the occurrence of the spallation led to the failure of the coating systems, which was mainly due to the residual stress during the deposition process, thermal stress induced by the mismatch in thermal expansion coefficient and further oxidation of the substrate. Please click Additional Files below to see the full abstract

    Hainan sport tourism development—A SWOT analysis

    Get PDF
    Hainan, as a popular tourism destination, is well-promoted by the Chinese central government. In particular, both central and local governments encourage Hainan’s sport tourism-related professionals to develop sport tourism as one of the most important tourist activities in Hainan. However, previous research has not reported on Hainan’s sport tourism strengths, weaknesses, opportunities, and threats as a tourism destination or a sports event host. This study uses SWOT analysis to identify the strengths, weaknesses, opportunities, and threats in the context of Hainan’s sport tourism development. A total of 12 dimensions, including branding, culture, finance, infrastructure, location, market, nature, policy, product, specialty, sustainability, and tourist were generated from our data analysis. In addition, a total of five future directions, including emphasizing event-oriented sport tourism, prioritizing sport motivation, identifying major sport tourism markets, making the rational use of sport tourism resources, and nurturing sport culture, are recommended as a result of this study

    Large AI Models in Health Informatics: Applications, Challenges, and the Future

    Full text link
    Large AI models, or foundation models, are models recently emerging with massive scales both parameter-wise and data-wise, the magnitudes of which can reach beyond billions. Once pretrained, large AI models demonstrate impressive performance in various downstream tasks. A prime example is ChatGPT, whose capability has compelled people's imagination about the far-reaching influence that large AI models can have and their potential to transform different domains of our lives. In health informatics, the advent of large AI models has brought new paradigms for the design of methodologies. The scale of multi-modal data in the biomedical and health domain has been ever-expanding especially since the community embraced the era of deep learning, which provides the ground to develop, validate, and advance large AI models for breakthroughs in health-related areas. This article presents a comprehensive review of large AI models, from background to their applications. We identify seven key sectors in which large AI models are applicable and might have substantial influence, including 1) bioinformatics; 2) medical diagnosis; 3) medical imaging; 4) medical informatics; 5) medical education; 6) public health; and 7) medical robotics. We examine their challenges, followed by a critical discussion about potential future directions and pitfalls of large AI models in transforming the field of health informatics.Comment: This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatic

    Simulation study of BESIII with stitched CMOS pixel detector using ACTS

    Full text link
    Reconstruction of tracks of charged particles with high precision is very crucial for HEP experiments to achieve their physics goals. As the tracking detector of BESIII experiment, the BESIII drift chamber has suffered from aging effects resulting in degraded tracking performance after operation for about 15 years. To preserve and enhance the tracking performance of BESIII, one of the proposals is to add one layer of thin CMOS pixel sensor in cylindrical shape based on the state-of-the-art stitching technology, between the beam pipe and the drift chamber. The improvement of tracking performance of BESIII with such an additional pixel detector compared to that with only the existing drift chamber is studied using the modern common tracking software ACTS, which provides a set of detector-agnostic and highly performant tracking algorithms that have demonstrated promising performance for a few high energy physics and nuclear physics experiments

    Remodeling of the periodontal ligament and alveolar bone during axial tooth movement in mice with type 1 diabetes

    Get PDF
    ObjectivesTo observe the elongation of the axial tooth movement in the unopposed rodent molar model with type 1 diabetes mellitus and explore the pathological changes of periodontal ligament and alveolar bone, and their correlation with tooth axial movement.MethodsThe 80 C57BL/6J mice were randomly divided into the streptozotocin(STZ)-injected group (n = 50) and the control group (n = 30). Mice in the streptozotocin(STZ)-injected group were injected intraperitoneal with streptozotocin (STZ), and mice in the control group were given intraperitoneal injection of equal doses of sodium citrate buffer. Thirty mice were randomly selected from the successful models as the T1DM group. The right maxillary molar teeth of mice were extracted under anesthesia, and allowed mandibular molars to super-erupt. Mice were sacrificed at 0, 3, 6,9, and 12 days. Tooth elongation and bone mineral density (BMD) were evaluated by micro-CT analysis(0,and 12 days mice). Conventional HE staining, Masson staining and TRAP staining were used to observe the changes in periodontal tissue(0, 3, 6, 9, and 12 days mice). The expression differences of SPARC, FGF9, BMP4, NOGGIN, and type I collagen were analyzed by RT-qPCR.ResultsAfter 12 days of tooth extraction, our data showed significant super-eruption of mandibular mouse molars of the two groups. The amount of molar super-eruption in the T1DM group was 0.055mm( ± 0.014mm), and in the control group was 0.157( ± 0.017mm). The elongation of the T1DM mice was less than that of the control mice(P<0.001). It was observed that the osteoclasts and BMD increased gradually in both groups over time. Compared with the control group, the collagen arrangement was more disordered, the number of osteoclasts was higher (P<0.05), and the increase of bone mineral density was lower(2.180 ± 0.007g/cm3 vs. 2.204 ± 0.006g/cm3, P<0.001) in the T1DM group. The relative expression of SPARC, FGF9, BMP4, and type I collagen in the two groups increased with the extension of tooth extraction time while NOGGIN decreased. The relative expression of all of SPARC, FGF9, BMP4, and type I collagen in the T1DM group were significantly lower, and the expression of NOGGIN was higher than that in the control group (P<0.05).ConclusionThe axial tooth movement was inhibited in type 1 diabetic mice. The result may be associated with the changes of periodontal ligament osteoclastogenic effects and alveolar bone remodeling regulated by the extracellular matrix and osteogenesis-related factors

    Beam test of a 180 nm CMOS Pixel Sensor for the CEPC vertex detector

    Full text link
    The proposed Circular Electron Positron Collider (CEPC) imposes new challenges for the vertex detector in terms of pixel size and material budget. A Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix, based on a column drain readout architecture, has been developed to address the need for high spatial resolution. In order to evaluate the performance of the TaichuPix-3 chips, a beam test was carried out at DESY II TB21 in December 2022. Meanwhile, the Data Acquisition (DAQ) for a muti-plane configuration was tested during the beam test. This work presents the characterization of the TaichuPix-3 chips with two different processes, including cluster size, spatial resolution, and detection efficiency. The analysis results indicate the spatial resolution better than 5 μm\mu m and the detection efficiency exceeds 99.5 % for both TaichuPix-3 chips with the two different processes
    • …
    corecore