48 research outputs found

    High Resolution and Fast Response of Humidity Sensor Based on AlN Cantilever with Two Groups of Segmented Electrodes

    Get PDF
    Resonant cantilever based on piezoelectric materials is one of the most promising platforms for real-time humidity sensing. In this letter, we propose a humidity sensor based on an AlN piezoelectric microcantilever with a high-order resonant mode and a sensing layer of MoS2. The top electrode of cantilever is designed into two groups of segmented electrodes in order to achieve a high intensity of the resonance peak of the cantilever resonator operated at a high-order mode. Compared with the humidity sensor based on a standard cantilever with the same dimension, the sensitivity of the newly proposed humidity sensor is increased from 5.99 to 778 Hz/%RH when the humidity is about 80%RH. The resolution is increased from 0.21%RH to 0.025%RH because of the improvement of the ratio of sensitivity to noise, which cannot be achieved simply by increasing the frequency. The sensor shows a low hysteresis (5.8%) in a wide humidity sensing range from 10%RH to 90%RH. Moreover, the proposed humidity sensor has good short-term repeatability, fast response (0.6 s) and recovery (8 s) to humidity changes, indicating its great potential for fast-response detection

    Highly precision carbon dioxide acoustic wave sensor with minimized humidity interference

    Get PDF
    Extensive applications of carbon dioxide (CO2) in various fields, such as food industry, agricultural production, medical and pharmacological industries, have caused a great demand for high-performance CO2 sensors. However, most existing CO2 sensors suffer from poor performance in a wet environment and often cannot work accurately in a high humidity condition. In this study, a quartz crystal resonator (QCR) coated with a uniform layer of reduced graphene oxide (RGO) is proposed to detect both the concentrations of CO2 and water molecules simultaneously, which can be used to significantly minimize the humidity interference. Unlike the other common gas sensors, the RGO-based CO2 QCR sensor can be operated in different humidity levels and the concentration of CO2 can be quantified precisely and effectively. Moreover, it has a fast response (~0.4 s), which is also suitable for respiration monitoring. Our results showed that before and after a volunteer did a low-intensity exercise, the sensor could detect the differences of concentrations of CO2 in the exhaled breath (i.e., 4.50% and 5.15%, respectively)

    Preparation and Properties of Polyurethane Composite Foams with Silica-Based Fillers

    No full text
    Polyurethane composite foams were prepared by adding three different types of silica materials as a filler to improve the mechanical and thermal insulation properties. The first type of filler consists of silica aerogels with high-volume pores, with the expectation of improving the thermal insulation of PU foams because silica aerogel itself has superior thermal insulation properties. Silica nanoparticle is used for the second type that has a size very similar to the pore size of silica aerogels for comparison. The last type to produce polyurethane composite foam uses a sol–gel reaction to produce polysiloxane that reacts with polyols during the urethane reaction and forming process. In particular, in the case of silica aerogels and nanoparticles, their surfaces are modified with APTES and then polymeric methylene diphenylene diisocyanate (PMDI) to increase the interaction between the polymer matrix and inorganic fillers. The polyurethane foam structure was successfully produced in all cases of composite foams. As expected, the mechanical properties and the thermal insulation effect were enhanced by the addition of silica fillers, but found to be closely related to the cell structure of polyurethane foams. The addition of small amounts of inorganic fillers improves the mechanical and thermal properties, but the higher the amount of filler, the worse they are due to the agglomeration of fillers on the cell walls. The dispersion of added inorganic fillers within the foam cells should be controlled effectively. Surface-modified silica fillers exhibit better enhancement of mechanical and thermal insulation properties

    Preparation and Properties of Polyurethane Composite Foams with Silica-Based Fillers

    No full text
    Polyurethane composite foams were prepared by adding three different types of silica materials as a filler to improve the mechanical and thermal insulation properties. The first type of filler consists of silica aerogels with high-volume pores, with the expectation of improving the thermal insulation of PU foams because silica aerogel itself has superior thermal insulation properties. Silica nanoparticle is used for the second type that has a size very similar to the pore size of silica aerogels for comparison. The last type to produce polyurethane composite foam uses a sol–gel reaction to produce polysiloxane that reacts with polyols during the urethane reaction and forming process. In particular, in the case of silica aerogels and nanoparticles, their surfaces are modified with APTES and then polymeric methylene diphenylene diisocyanate (PMDI) to increase the interaction between the polymer matrix and inorganic fillers. The polyurethane foam structure was successfully produced in all cases of composite foams. As expected, the mechanical properties and the thermal insulation effect were enhanced by the addition of silica fillers, but found to be closely related to the cell structure of polyurethane foams. The addition of small amounts of inorganic fillers improves the mechanical and thermal properties, but the higher the amount of filler, the worse they are due to the agglomeration of fillers on the cell walls. The dispersion of added inorganic fillers within the foam cells should be controlled effectively. Surface-modified silica fillers exhibit better enhancement of mechanical and thermal insulation properties

    Crystal structure of the human PRPK–TPRKB complex

    No full text
    Jian Li and Xinli Ma et al. present a 2.53 Å crystal structure of a complex consisting of the human p53-related protein kinase (PRPK), TP53RK-binding protein, and adenylyl-imidodiphosphate. They find that one disease mutation, PRPK K238Nfs*2, is important for PRPK’s binding to O-sialoglycoprotein endopeptidase, providing insights into rational drug design

    Lamellation Fractures in the Paleogene Continental Shale Oil Reservoirs in the Qianjiang Depression, Jianghan Basin, China

    No full text
    Based on the data of cores, thin sections, well logs, and test experiments, the characteristics and main controlling factors of lamellation fractures in continental shales of the third and fourth members of the Paleogene Qianjiang Formation in the Qianjiang Depression, Jianghan Basin, are studied. Lamellation fractures mainly develop along laminas in shales. They have various morphological characteristics such as straightness, bending, discontinuity, bifurcation, pinching out, and merging. Lamellation fractures with high density show poor horizontal continuity and connectivity characteristics. The average linear density of the lamellation fractures is mainly between 20 m-1 and 110 m-1, and the aperture is usually less than 160 μm. The density of lamellation fractures is related to their apertures. The smaller the apertures of lamellation fractures are, the higher the density is. The development degree of lamellation fractures is mainly controlled by mineral composition, type, thickness, density of lamination, contents of organic matter and pyrite, lithofacies, structural position, etc. Lamellation fractures develop well, especially under the conditions of medium dolomite content, large lamination density, small lamination thickness, and high total organic carbon (TOC) and pyrite contents. The influences of lithofacies on the lamellation fractures are complex. The lamellation fractures are most developed in carbonaceous layered limestone dolomite and carbonaceous layered dolomite mudstone, followed by stromatolite dolomite filled with carbonaceous pyroxene. The fractures in the massive argillaceous dolomites and carbonaceous massive mudstones are poorly developed. No fractures can be found in the carbonaceous dolomitic, argillaceous glauberites or salt rocks with high glauberite content. Structure is also an important factor controlling lamination fractures. Tectonic uplifts are beneficial to the expansion and extension of lamellation fractures, which increases fracture density. Therefore, when other influence factors are similar, lamellation fractures develop better in the high part of the structure than in the low part

    Prediction of molecular targets of cancer preventing flavonoid compounds using computational methods.

    Get PDF
    Plant-based polyphenols (i.e., phytochemicals) have been used as treatments for human ailments for centuries. The mechanisms of action of these plant-derived compounds are now a major area of investigation. Thousands of phytochemicals have been isolated, and a large number of them have shown protective activities or effects in different disease models. Using conventional approaches to select the best single or group of best chemicals for studying the effectiveness in treating or preventing disease is extremely challenging. We have developed and used computational-based methodologies that provide efficient and inexpensive tools to gain further understanding of the anticancer and therapeutic effects exerted by phytochemicals. Computational methods involving virtual screening, shape and pharmacophore analysis and molecular docking have been used to select chemicals that target a particular protein or enzyme and to determine potential protein targets for well-characterized as well as for novel phytochemicals

    Select dietary phytochemicals function as inhibitors of COX-1 but not COX-2.

    Get PDF
    Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses

    Computational and Biochemical Discovery of RSK2 as a Novel Target for Epigallocatechin Gallate (EGCG)

    No full text
    <div><p>The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). Protein interaction with EGCG is a critical step for mediating the effects of EGCG on the regulation of various key molecules involved in signal transduction. By using computational docking screening methods for protein identification, we identified a serine/threonine kinase, 90-kDa ribosomal S6 kinase (RSK2), as a novel molecular target of EGCG. RSK2 includes two kinase catalytic domains in the N-terminal (NTD) and the C-terminal (CTD) and RSK2 full activation requires phosphorylation of both terminals. The computer prediction was confirmed by an <i>in vitro</i> kinase assay in which EGCG inhibited RSK2 activity in a dose-dependent manner. Pull-down assay results showed that EGCG could bind with RSK2 at both kinase catalytic domains <i>in vitro</i> and <i>ex vivo</i>. Furthermore, results of an ATP competition assay and a computer-docking model showed that EGCG binds with RSK2 in an ATP-dependent manner. In RSK2<sup>+/+</sup> and RSK2<sup>-/-</sup> murine embryonic fibroblasts, EGCG decreased viability only in the presence of RSK2. EGCG also suppressed epidermal growth factor-induced neoplastic cell transformation by inhibiting phosphorylation of histone H3 at Ser10. Overall, these results indicate that RSK2 is a novel molecular target of EGCG.</p></div

    Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor

    No full text
    Targeting epigenetic changes in gene expression in cancer cells may offer new strategies for the development of selective cancer therapies. In the present study, we investigated coumestrol, a natural compound exhibiting broad anti-cancer effects against skin melanoma, lung cancer and colon cancer cell growth. Haspin kinase was identified as a direct target protein of coumestrol using kinase profiling analysis. Histone H3 is a direct substrate of haspin kinase. We observed haspin kinase overexpression as well as greater phosphorylation of histone H3 at threonine 3 (Thr-3) in the cancer cells compared to normal cells. Computer modeling using the Schrödinger Suite program identified the binding interface within the ATP binding site. These findings suggest that the anti-cancer effect of coumestrol is due to the direct targeting of haspin kinase. Coumestrol has considerable potential for further development as a novel anti-cancer agent
    corecore