2,331 research outputs found

    Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse Model by Downregulation of Cell Signaling Pathway Leading to Invasion and Angiogenesis

    Get PDF
    Purpose: To investigate the effect of withaferin A on tumor growth and metastasis in liver in a nude mouse model.Methods: Withaferin A was injected through a portal vein to the orthotopic liver tumor in a nude mice model. Xenogen in vivo imaging system was used to monitor tumor growth and metastasis. The effect of withaferin A on tumor volume, invasive growth pattern, expression of Pyk2, upregulation of BAX/P53, apoptotic signaling and ROCK/IP10/VEGF pathway along with cytoskeletal protein actin projection formation was studied. Tumor/non-tumor margin was examined under electron microscopy. In addition, the direct effect of withaferin A on liver cancer cells and endothelial cells was further investigated.Results: A significant inhibition of tumor growth and lower incidence of lung metastasis was observed after withaferin A treatment. Withaferin A treatment led to a decrease in the incidence of intrahepatic metastasis from 90 (9 of 10) to 10 % (1 of 10, p = 0.041). There was decrease in macrophage infiltration in the liver tumors and vessels. Western blot analysis revealed inhibition of expression of Pyk2, ROCK1 protein and VEGF. Electron microscopy showed tumor vascular endothelial cell damage and significant necrosis of tumor tissues. It also suppressed formation of cytoskeletal protein actin projection involved in cell migration.Conclusion: Withaferin A inhibits liver tumor invasion and angiogenesis by downregulation of cell signalling pathway leading to invasion and angiogenesis. Therefore, withaferin A is a promising candidate for the treatment of liver tumor invasion and angiogenesis.Keywords: Withaferin A, Macrophage, Lung metastasis, Angiogenesis, Vascular endothelial growth factor, Rho kinase, Withania somnifer

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Metabonomics and Intensive Care

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Relevance similarity: an alternative means to monitor information retrieval systems

    Get PDF
    BACKGROUND: Relevance assessment is a major problem in the evaluation of information retrieval systems. The work presented here introduces a new parameter, "Relevance Similarity", for the measurement of the variation of relevance assessment. In a situation where individual assessment can be compared with a gold standard, this parameter is used to study the effect of such variation on the performance of a medical information retrieval system. In such a setting, Relevance Similarity is the ratio of assessors who rank a given document same as the gold standard over the total number of assessors in the group. METHODS: The study was carried out on a collection of Critically Appraised Topics (CATs). Twelve volunteers were divided into two groups of people according to their domain knowledge. They assessed the relevance of retrieved topics obtained by querying a meta-search engine with ten keywords related to medical science. Their assessments were compared to the gold standard assessment, and Relevance Similarities were calculated as the ratio of positive concordance with the gold standard for each topic. RESULTS: The similarity comparison among groups showed that a higher degree of agreements exists among evaluators with more subject knowledge. The performance of the retrieval system was not significantly different as a result of the variations in relevance assessment in this particular query set. CONCLUSION: In assessment situations where evaluators can be compared to a gold standard, Relevance Similarity provides an alternative evaluation technique to the commonly used kappa scores, which may give paradoxically low scores in highly biased situations such as document repositories containing large quantities of relevant data

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Get PDF
    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system

    Study of B -> \rho \pi decays at Belle

    Full text link
    This paper describes a study of B meson decays to the pseudoscalar-vector final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) = (8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) = (20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90% confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett.
    corecore