539 research outputs found

    Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir

    Full text link
    The uncertainty relation is a fundamental limit in quantum mechanics and is of great importance to quantum information processing as it relates to quantum precision measurement. Due to interactions with the surrounding environment, a quantum system will unavoidably suffer from decoherence. Here, we investigate the dynamic behaviors of the entropic uncertainty relation of an atom-cavity interacting system under a bosonic reservoir during the crossover between Markovian and non-Markovian regimes. Specifically, we explore the dynamic behavior of the entropic uncertainty relation for a pair of incompatible observables under the reservoir-induced atomic decay effect both with and without quantum memory. We find that the uncertainty dramatically depends on both the atom-cavity and the cavity-reservoir interactions, as well as the correlation time, Ï„\tau, of the structured reservoir. Furthermore, we verify that the uncertainty is anti-correlated with the purity of the state of the observed qubit-system. We also propose a remarkably simple and efficient way to reduce the uncertainty by utilizing quantum weak measurement reversal. Therefore our work offers a new insight into the uncertainty dynamics for multi-component measurements within an open system, and is thus important for quantum precision measurements.Comment: 17 pages, 9 figures, to appear in Scientific Report

    The universal "heartbeat" oscillations in black hole systems accross the mass-scale

    Full text link
    The hyperluminous X-ray source (HLX-1, the peak X-ray luminosity ∼1042erg s−1\sim 10^{42}\rm erg\ s^{-1}) near the spiral galaxy ESO 243-49 is possibly the best candidate for intermediate mass black hole (IMBH), which underwent recurrent outbursts with a period of ∼400\sim 400 days. The physical reason for this quasi-periodic variability is still unclear. We explore the possibility of radiation-pressure instability in accretion disk by modeling the light curve of HLX-1, and find that it can roughly reproduce the duration, period and amplitude of the recurrent outbursts HLX-1 with an IMBH of ~10^5Msun. Our result provides a possible mechanism to explain the recurrent outbursts in HLX-1. We further find a universal correlation between the outburst duration and the bolometric luminosity for the BH sources with a very broad mass range (e.g., X-ray binaries, XRBs, HLX-1 and active galactic nuclei, AGNs), which is roughly consistent with the prediction of radiation-pressure instability of the accretion disk. These results imply that "heartbeat" oscillations triggered by radiation-pressure instability may appears in different-scale BH systems.Comment: ApJ in press; 15 pages, 5 Figure
    • …
    corecore