41 research outputs found

    Dose Delivery Concept and Instrumentation

    Full text link
    Radiation therapy aims to deliver the prescribed amount of dose to a tumour at the same time as sparing the surrounding tissues as much as possible. In charged particle therapy, delivering the prescribed dose is equivalent to delivering the prescribed number of ions of a given energy at each position of the irradiation field. The accurate delivery is committed to a dose delivery (DD) system that shapes, guides and controls the beam before the patient entrance. Most of the early DD systems provided uniform lateral dose profiles by using different devices, mainly patient-specific, placed in the beam line to shape the three-dimensional final target dose. More recently, systems that provide highly conformal dose distributions using thousands of narrow beams at well-defined energy were developed which feature advanced scanning magnets and real-time beam monitors, without patient-specific hardware. This lecture will cover the general dose delivery concept as well as the different DD instrumentations depending mainly on the beam delivery technique and on the particle and accelerator types. Some characteristic worldwide DD and beam monitor systems will be mentioned.Comment: presented at the CAS- CERN Accelerator School on Accelerators for Medical Application, V\"osendorf, Austria, 26 May - 5 June, 201

    Temporal analysis of social media response to live events: The Milano fashion week

    Get PDF
    Social media response to catastrophic events, such as natural disasters or terrorist attacks, has received a lot of attention. However, social media are also extremely important in the context of planned events, such as fairs, exhibits, festivals, as they play an essential role in communicating them to fans, interest groups, and the general population. These kinds of events are geo-localized within a city or territory and are scheduled within a public calendar. We consider a specific scenario, the Milano Fashion Week (MFW), which is an important event in our city. We focus our attention on the spreading of social content in time, measuring the delay of the event propagation. We build different clusters of stakeholders (fashion brands), we characterize several features of time propagation and we correlate it to the popularity of involved actors. We show that the clusters by time and popularity are loosely correlated, and therefore the time response cannot be easily inferred. This motivates the development of a predictor through supervised learning in order to anticipate the space cluster of a new brand

    Six Drivers to Face the XXI Century Challenges and Build the New Healthcare System: "La Salute in Movimento" Manifesto

    Get PDF
    : The aging of the population, the burden of chronic diseases, possible new pandemics are among the challenges for healthcare in the XXI century. To face them, technological innovations and the national recovery and resilience plan within the European Union can represent opportunities to implement changes and renovate the current healthcare system in Italy, in an effort to guarantee equal access to health services. Considering such scenario, a panel of Italian experts gathered in a multidisciplinary Think Tank to discuss possible design of concepts at the basis of a new healthcare system. These ideas were summarized in a manifesto with six drivers for change: vision, governance, competence, intelligence, humanity and relationship. Each driver was linked to an action to actively move toward a new healthcare system based on trust between science, citizens and institutions

    Fluence Beam Monitor for High-Intensity Particle Beams Based on a Multi-Gap Ionization Chamber and a Method for Ion Recombination Correction

    Get PDF
    This work presents the tests of a multi-gap detector (MGD), composed of three parallel-plate ionization chambers (ICs) with different gap widths, assembled to prove the capability of correcting for charge volume recombination which is expected to occur when high fluence rates are delivered. Such beam conditions occur with a compact accelerator for charged particle therapy developed to reduce the costs, to accomplish faster treatments and to exploit different beam delivery techniques and dose rates as needed, for example, for range modulation and FLASH irradiations, respectively. The MGD was tested with carbon ions at the Centro Nazionale di Adroterapia Oncologica (CNAO Pavia, Italy), and with protons in two different beam lines: at Bern University Hospital with continuous beams and at the Laboratori Nazionale del Sud (Catania, Italy) of the Italian National Center of Nuclear Physics (INFN) with pulsed beams. For each accelerator, we took measurements with different beam intensities (up to the maximum rate of ionization achievable) and changed the detector bias voltage (V) in order to study the charge collection efficiency. Charge recombination models were used to evaluate the expected collected charge and to measure the linearity of the rate of ionization with the beam fluence rate. A phenomenological approach was used to determine the collection efficiency (f1) of the chamber with thinnest gap from the relative efficiencies, f1/f2 and f1/f3, exploiting the condition that, for each measurement, the three chambers were exposed to the same rate of ionization. Results prove that two calibration curves can be determined and used to correct the online measurements for the charge losses in the ICs for recombination

    Calibration method and performance of a time-of-flight detector to measure absolute beam energy in proton therapy

    Get PDF
    Background: The beam energy is one of the most significant parameters in particle therapy since it is directly correlated to the particles' penetration depth inside the patient. Nowadays, the range accuracy is guaranteed by offline routine quality control checks mainly performed with water phantoms, 2D detectors with PMMA wedges, or multi-layer ionization chambers. The latter feature low sensitivity, slow collection time, and response dependent on external parameters, which represent limiting factors for the quality controls of beams delivered with fast energy switching modalities, as foreseen in future treatments. In this context, a device based on solid-state detectors technology, able to perform a direct and absolute beam energy measurement, is proposed as a viable alternative for quality assurance measurements and beam commissioning, paving the way for online range monitoring and treatment verification. Purpose: This work follows the proof of concept of an energy monitoring system for clinical proton beams, based on Ultra Fast Silicon Detectors (featuring tenths of ps time resolution in 50 ÎĽm active thickness, and single particle detection capability) and time-of-flight techniques. An upgrade of such a system is presented here, together with the description of a dedicated self-calibration method, proving that this second prototype is able to assess the mean particles energy of a monoenergetic beam without any constraint on the beam temporal structure, neither any a priori knowledge of the beam energy for the calibration of the system. Methods: A new detector geometry, consisting of sensors segmented in strips, has been designed and implemented in order to enhance the statistics of coincident protons, thus improving the accuracy of the measured time differences. The prototype was tested on the cyclotron proton beam of the Trento Protontherapy Center (TPC). In addition, a dedicated self-calibration method, exploiting the measurement of monoenergetic beams crossing the two telescope sensors for different flight distances, was introduced to remove the systematic uncertainties independently from any external reference. Results: The novel calibration strategy was applied to the experimental data collected at TPC (Trento) and CNAO (Pavia). Deviations between measured and reference beam energies in the order of a few hundreds of keV with a maximum uncertainty of 0.5 MeV were found, in compliance with the clinically required water range accuracy of 1 mm. Conclusions: The presented version of the telescope system, minimally perturbative of the beam, relies on a few seconds of acquisition time to achieve the required clinical accuracy and therefore represents a feasible solution for beam commission, quality assurance checks, and online beam energy monitoring

    Online proton therapy monitoring: Clinical test of a Silicon-photodetector-based in-beam PET

    Get PDF
    Particle therapy exploits the energy deposition pattern of hadron beams. The narrow Bragg Peak at the end of range is a major advantage but range uncertainties can cause severe damage and require online verification to maximise the effectiveness in clinics. In-beam Positron Emission Tomography (PET) is a non-invasive, promising in-vivo technique, which consists in the measurement of the β+ activity induced by beam-tissue interactions during treatment, and presents the highest correlation of the measured activity distribution with the deposited dose, since it is not much influenced by biological washout. Here we report the first clinical results obtained with a state-of-the-art in-beam PET scanner, with on-the-fly reconstruction of the activity distribution during irradiation. An automated time-resolved quantitative analysis was tested on a lacrimal gland carcinoma case, monitored during two consecutive treatment sessions. The 3D activity map was reconstructed every 10 s, with an average delay between beam delivery and image availability of about 6 s. The correlation coefficient of 3D activity maps for the two sessions (above 0.9 after 120 s) and the range agreement (within 1 mm) prove the suitability of in-beam PET for online range verification during treatment, a crucial step towards adaptive strategies in particle therapy

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan
    corecore