2,618 research outputs found

    Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium

    Full text link
    Cosmic rays are an important tool to study dark matter annihilation in our Galaxy. Recently, a possible hint for dark matter annihilation was found in the antiproton spectrum measured by AMS-02, even though the result might be affected by theoretical uncertainties. A complementary way to test its dark matter interpretation would be the observation of low-energy antinuclei in cosmic rays. We determine the chances to observe antideuterons with GAPS and AMS-02, and the implications for the ongoing AMS-02 antihelium searches. We find that the corresponding antideuteron signal is within the GAPS and AMS-02 detection potential. If, more conservatively, the putative signal was considered as an upper limit on DM annihilation, our results would indicate the highest possible fluxes for antideuterons and antihelium compatible with current antiproton data.Comment: 11 pages, 5 figures, matches published versio

    Prescriptions on antiproton cross section data for precise theoretical antiproton flux predictions

    Get PDF
    After the breakthrough from the satellite-borne PAMELA detector, the flux of cosmic-ray (CR) antiprotons has been provided with unprecedented accuracy by AMS-02 on the International Space Station. Its data spans an energy range from below 1 GeV up to 400 GeV and most of the data points contain errors below the amazing level of 5%. The bulk of the antiproton flux is expected to be produced by the scatterings of CR protons and helium off interstellar hydrogen and helium atoms at rest. The modeling of these interactions, which requires the relevant production cross sections, induces an uncertainty in the determination of the antiproton source term that can even exceed the uncertainties in the CR pˉ\bar{p} data itself. The aim of the present analysis is to determine the uncertainty required for p+p→pˉ+Xp+p\rightarrow \bar{p} + X cross section measurements such that the induced uncertainties on the pˉ\bar{p} flux are at the same level. Our results are discussed both in the center-of-mass reference frame, suitable for collider experiments, and in the laboratory frame, as occurring in the Galaxy. We find that cross section data should be collected with accuracy better that few percent with proton beams from 10 GeV to 6 TeV and a pseudorapidity η\eta ranging from 2 to almost 8 or, alternatively, with pTp_T from 0.04 to 2 GeV and xRx_R from 0.02 to 0.7. Similar considerations hold for the ppHe production channel. The present collection of data is far from these requirements. Nevertheless, they could, in principle, be reached by fixed target experiments with beam energies in the reach of CERN accelerators.Comment: 15 pages, 13 figures, matches published versio

    Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments

    Get PDF
    The cosmic-ray flux of antiprotons is measured with high precision by the space-borne particle spectrometers AMS-02.Its interpretation requires a correct description of the dominant production process for antiprotons in our Galaxy, namely, the interaction of cosmic-ray proton and helium with the interstellar medium. In the light of new cross section measurements by the NA61 experiment of p+p→pˉ+Xp + p \rightarrow \bar{p} + X and the first ever measurement of p+He→pˉ+Xp + \mathrm{He} \rightarrow \bar{p} + X by the LHCb experiment, we update the parametrization of proton-proton and proton-nucleon cross sections.We find that the LHCb ppHe data constrain a shape for the cross section at high energies and show for the first time how well the rescaling from the pppp channel applies to a helium target. By using pppp, ppHe and ppC data we estimate the uncertainty on the Lorentz invariant cross section for p+He→pˉ+Xp + \mathrm{He} \rightarrow \bar{p} + X. We use these new cross sections to compute the source term for all the production channels, considering also nuclei heavier than He both in cosmic rays and the interstellar medium. The uncertainties on the total source term are at the level of ±20\pm20% and slightly increase below antiproton energies of 5 GeV. This uncertainty is dominated by the p+p→pˉ+Xp+p \rightarrow \bar{p} + X cross section, which translates into all channels since we derive them using the pppp cross sections. The cross sections to calculate the source spectra from all relevant cosmic-ray isotopes are provided in the Supplemental Material. We finally quantify the necessity of new data on antiproton production cross sections, and pin down the kinematic parameter space which should be covered by future data.Comment: 16 pages, 11 figures, matches published versio

    The Dream

    Full text link

    On the use of Wireless Sensor Networks in Preventative Maintenance for Industry 4.0

    Get PDF
    The goal of this paper is to present a literature study on the use of Wireless Sensor Networks (WSNs) in Preventative Maintenance applications for Industry 4.0. Requirements for industrial applications are discussed along with a comparative of the characteristics of the existing and emerging WSN technology enablers. The design considerations inherent to WSNs becoming a tool to drive maintenance efficiencies are discussed in the context of implementations in the research literature and commercial solutions available on the market

    Machine Learning Applications to Land and Structure Valuation

    Get PDF
    Acknowledgments: We thank Nicola Stalder and his IAZI team for preparing the dataset for the Swiss case study. The authors are grateful to the referees, whose feedback and comments have improved the quality of the paper.Peer reviewedPublisher PD

    New determination of the production cross section for Îł\gamma rays in the Galaxy

    Full text link
    The flux of Îł\gamma rays is measured with unprecedented accuracy by the Fermi\textit{Fermi} Large Area Telescope from 100 MeV to almost 1 TeV. In the future, the Cherenkov Telescope Array will have the capability to measure photons up to 100 TeV. To accurately interpret this data, precise predictions of the production processes, specifically the cross section for the production of photons from the interaction of cosmic-ray protons and helium with atoms of the ISM, are necessary. In this study, we determine new analytical functions describing the Lorentz-invariant cross section for Îł\gamma-ray production in hadronic collisions. We utilize the limited total cross section data for π0\pi^0 production channels and supplement this information by drawing on our previous analyses of charged pion production to infer missing details. In this context, we highlight the need for new data on π0\pi^0 production. Our predictions include the cross sections for all production channels that contribute down to the 0.5% level of the final cross section, namely η\eta, K+K^+, K−K^-, KS0K^0_S, and KL0K^0_L mesons as well as Λ\Lambda, ÎŁ\Sigma, and Ξ\Xi baryons. We determine the total differential cross section dσ(p+p→γ+X)/dEÎłd\sigma(p+p\rightarrow \gamma+X)/dE_{\gamma} from 10 MeV to 100 TeV with an uncertainty of 10% below 10 GeV of Îł\gamma-ray energies, increasing to 20% at the TeV energies. We provide numerical tables and a script for the community to access our energy-differential cross sections, which are provided for incident proton (nuclei) energies from 0.1 to 10710^7 GeV (GeV/n).Comment: 12 pages, 8 figures. This version includes also the fit to the LHCf data on π0\pi^0 production. It matches version published by PRD. The updated tables of the energy differential cross sections of gamma rays can be found here: https://github.com/lucaorusa/gamma_cross_sectio
    • 

    corecore