11,127 research outputs found

    Geometric transport along circular orbits in stationary axisymmetric spacetimes

    Full text link
    Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravitoelectromagnetic fields associated with the zero angular momentum observers and of the Frenet-Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure

    Kerr metric, static observers and Fermi coordinates

    Full text link
    The coordinate transformation which maps the Kerr metric written in standard Boyer-Lindquist coordinates to its corresponding form adapted to the natural local coordinates of an observer at rest at a fixed position in the equatorial plane, i.e., Fermi coordinates for the neighborhood of a static observer world line, is derived and discussed in a way which extends to any uniformly circularly orbiting observer there.Comment: 15 page latex iopart class documen

    Chandra X-ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT gamma-ray Sources

    Get PDF
    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (|b|>10 deg) gamma-ray sources from the 3 month Fermi-LAT bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are catalogued, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within their respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.Comment: ApJ, accepted. 18 pages, 5 figure

    Efficacy and toxicity of bevacizumab in recurrent ovarian disease: an update meta-analysis on phase III trials

    Get PDF
    Background: To analyze the efficacy and toxicity of bevacizumab on survival outcomes in recurrent ovarian cancer. Results: Bevacizumab was associated with significant improvement of PFS and OS compared with standard treatment with HRs of 0.53 (95% CI 0.44 - 0.63; p < 0.00001) and 0.87 (95% CI, 0.77 to 0.99; p = 0.03), respectively. Bevacizumab increased the incidence of G3/G4 hypertension (RR 19.01, 95% CI 7.77 - 46.55; p < 0.00001), proteinuria (RR 17.31, 95% CI 5.42 - 55.25; p < 0.00001), arterial thromboembolic events (ATE) (RR 4.99, 95% CI 1.29 - 19.27; p = 0.02) and bleeding (RR 3.14, 95% CI 1.35 - 7.32; p = 0.008). Materials and Methods: Three randomized phase III trials representing 1502 patients were identified. Pooled hazard ratio (HR), odd ratio (OR), risk ratio (RR) with 95% confidence interval (CI) were calculated using fixed or random effects model. Conclusions: Adding bevacizumab to standard chemotherapy improved ORR, PFS and OS, and it had a higher, but manageable, incidence of toxicities graded 3 to 4

    Electrocardiogram of the Mixmaster Universe

    Full text link
    The Mixmaster dynamics is revisited in a new light as revealing a series of transitions in the complex scale invariant scalar invariant of the Weyl curvature tensor best represented by the speciality index S\mathcal{S}, which gives a 4-dimensional measure of the evolution of the spacetime independent of all the 3-dimensional gauge-dependent variables except for the time used to parametrize it. Its graph versus time characterized by correlated isolated pulses in its real and imaginary parts corresponding to curvature wall collisions serves as a sort of electrocardiogram of the Mixmaster universe, with each such pulse pair arising from a single circuit or ``complex pulse'' around the origin in the complex plane. These pulses in the speciality index and their limiting points on the real axis seem to invariantly characterize some of the so called spike solutions in inhomogeneous cosmology and should play an important role as a gauge invariant lens through which to view current investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex figures; added example of a transient true spike to contrast with the permanent true spike example from the Lim family of true spike solutions; remarks in introduction and conclusion adjusted and toned down; minor adjustments to the remaining tex

    Spin precession in the Schwarzschild spacetime: circular orbits

    Full text link
    We study the behavior of nonzero rest mass spinning test particles moving along circular orbits in the Schwarzschild spacetime in the case in which the components of the spin tensor are allowed to vary along the orbit, generalizing some previous work.Comment: To appear on Classical and Quantum Gravity, 200

    Discovery of an unidentified Fermi object as a black widow-like millisecond pulsar

    Get PDF
    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a "radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a ~0.1 solar-mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is ~3-5 ms based on the inferred gamma-ray luminosity.Comment: 6 pages, 2 figures; accepted for publication in ApJ

    Circular holonomy in the Taub-NUT spacetime

    Full text link
    Parallel transport around closed circular orbits in the equatorial plane of the Taub-NUT spacetime is analyzed to reveal the effect of the gravitomagnetic monopole parameter on circular holonomy transformations. Investigating the boost/rotation decomposition of the connection 1-form matrix evaluated along these orbits, one finds a situation that reflects the behavior of the general orthogonally transitive stationary axisymmetric case and indeed along Killing trajectories in general.Comment: 9 pages, LaTeX iopart class, no figure
    • …
    corecore