72 research outputs found

    Cytoprotective functions of amyloid precursor protein family members in stress signaling and aging

    Get PDF
    Poster presentation: Molecular Neurodegeneration: Basic biology and disease pathways Cannes, France. 10-12 September 2013. Background: The amyloid precursor protein (APP) is processed via two different metabolic pathways: the amyloidogenic and the non-amyloidogenic pathway, the latter of which leading to generation of the secreted N-terminal APP fragment sAPPα [1]. Previous studies from our group suggest that sAPPα exerts potent neuroprotective effects and inhibits stress-triggered cell death via modulation of gene expression, as well as by antagonizing different types of neurotoxic stress [2]. It was also observed that the biochemical processing of APP is downregulated during aging which in turn reduced the secretion of sAPPα [3]. Based on these observations, we have studied the potential physiological function of sAPPα/APP and APLPs (APP like proteins) on the regulation of age-associated, stress induced signaling pathways, apoptosis and senescence. Materials and methods: SH-SY5Y, PC12, IMR90 cells were used as cellular models. Depletion of APP, APLP1 (APP like protein 1) and APLP2 (APP like protein 2) in SH-SY5Y cells was achieved by stable lentiviral knockdown. To analyze the protective function of sAPPα, we have used conditioned supernatants of wild type APP overexpressing HEK cells and recombinant His-tagged sAPPα purified from yeast. The cells were treated with sAPPα prior to the addition of different stress stimuli (MG132, epoxomicin, UV, H2O2) after which cell death, gene expression and senescence were analyzed by MTT assays, caspase activity assays, Western blots and X-Gal staining respectively. Results: Our data show that sAPPα can antagonize premature senescence induced by repetitive short term induction of proteasomal stress in IMR-90 cells and apoptosis triggered by prolonged proteasomal stress and other death stimuli in PC12, SH-SY5Y and IMR90 cells which was accompanied by a sAPPα-dependent inhibition of the JNK stress signaling pathway. In contrast, no significant changes in cell viability and apoptosis were observed when APP knockdown cells were pretreated with sAPPα. Conclusions: Our observations suggest that sAPPα can antagonize both apoptosis and cellular senescence and requires expression of holo-APP to mediate its cytoprotective effects. They also support the notion that the physiological function of APP is linked to modulation of neuronal and brain aging

    Target-specific glioma therapy in an immunocompetent mouse model : meeting abstract

    Get PDF
    Objective: Establishment of an immunocompetent mouse model representing the typical progressive stages observed in malignant human gliomas for the in vivo evaluation of novel target-specific regimens. Methods: Isolated clones from tumours that arose spontaneously in GFAP-v-src transgenic mice were used to develop a transplantable brain tumour model in syngeneic B6C3F1 mice. STAT3 protein was knocked down by infection of tumour cells with replication-defective lentivirus encoding STAT3-siRNA. Apoptosis is designed to be induced by soluble recombinant TRAIL + chemical Bcl-2/Bcl-xL inhibitors. Results: Striatal implantation of 105 mouse tumour cells resulted in the robust development of microscopically (2 – 3 mm) infiltrating malignant gliomas. Immunohistochemically, the gliomas displayed the astroglial marker GFAP and the oncogenic form of STAT3 (Tyr-705-phosphorylated) which is found in many malignancies including gliomas. Phosphorylated STAT3 was particularly prominent in the nucleus but was also found at the plasma membrane of peripherally infiltrating glioma cells. To evaluate the role of STAT3 in tumour progression, we stably expressed siRNA against STAT3 in several murine glioma cell lines. The effect of STAT3 depletion on proliferation, invasion and survival will be first assessed in vitro and subsequently after transplantation in vivo. Upstream and downstream components of the STAT3 signalling pathway as well as possible non-specific side effects of STAT3-siRNA expression after lentiviral infection will be examined, too. Conclusions: Its high rate of engraftment, its similarity to the malignant glioma of origin, and its rapid locally invasive growth should make this murine model useful in testing novel therapies for malignant gliomas

    AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis11Accession no. for rat AATF nucleotide sequence at the EMBL GenBank database is RNO238717.

    Get PDF
    AbstractDlk, also known as ZIP kinase, is a serine/threonine kinase that is tightly associated with nuclear structures. Under certain conditions, which require cytoplasmic localization, Dlk can induce apoptosis. In search for interaction partners that might serve as regulators or targets of this kinase we identified apoptosis antagonizing transcription factor (AATF), a nuclear phosphoprotein of 523 amino acids. The 1.8 kb mRNA seems to be ubiquitously expressed. AATF contains an extremely acidic domain and a putative leucine zipper characteristic of transcription factors. Indeed, a Gal4-BD-AATF fusion protein exhibited strong transactivation activity. Interestingly, AATF interfered with Dlk-induced apoptosis

    TGF-β1 activates two distinct type I receptors in neurons: implications for neuronal NF-κB signaling

    Get PDF
    Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-β1 exerts potent neuroprotective effects. Neurons treated with TGF-β1 activated the canonical TGF-β receptor I/activin-like kinase receptor 5 (ALK5) pathway. The transcription factor nuclear factor-κB (NF-κB) plays a fundamental role in neuroprotection. Treatment with TGF-β1 enhanced NF-κB activity in gelshift and reporter gene analyses. However, ectopic expression of a constitutively active ALK5 failed to mimic these effects. ALK1 has been described as an alternative TGF-β receptor in endothelial cells. Interestingly, we detected significant basal expression of ALK1 and its injury-induced up-regulation in neurons. Treatment with TGF-β1 also induced a pronounced increase in downstream Smad1 phosphorylation. Overexpression of a constitutively active ALK1 mimicked the effect of TGF-β1 on NF-κB activation and neuroprotection. Our data suggest that TGF-β1 simultaneously activates two distinct receptor pathways in neurons and that the ALK1 pathway mediates TGF-β1–induced NF-κB survival signaling

    The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas

    Get PDF
    Background: New drugs are constantly sought after to improve the survival of patients with malignant gliomas. The ideal substance would selectively target tumor cells without eliciting toxic side effects. Here, we report on the anti-proliferative, anti-migratory, and anti-invasive properties of the natural, nontoxic compound Curcumin observed in five human glioblastoma (GBM) cell lines in vitro. Methods: We used monolayer wound healing assays, modified Boyden chamber trans-well assays, and cell growth assays to quantify cell migration, invasion, and proliferation in the absence or presence of Curcumin at various concentrations. Levels of the transcription factor phospho-STAT3, a potential target of Curcumin, were determined by sandwich-ELISA. Subsequent effects on transcription of genes regulating the cell cycle were analyzed by quantitative real-time PCR. Effects on apoptosis were determined by caspase assays. Results: Curcumin potently inhibited GBM cell proliferation as well as migration and invasion in all cell lines contingent on dose. Simultaneously, levels of the biologically active phospho-STAT3 were decreased and correlated with reduced transcription of the cell cycle regulating gene c-Myc and proliferation marking Ki-67, pointing to a potential mechanism by which Curcumin slows tumor growth. Conclusions: Curcumin is part of the diet of millions of people every day and is without known toxic side effects. Our data show that Curcumin bears anti-proliferative, anti-migratory, and anti-invasive properties against GBM cells in vitro. These results warrant further in vivo analyses and indicate a potential role of Curcumin in the treatment of malignant gliomas

    Bid Participates in Genotoxic Drug-Induced Apoptosis of HeLa Cells and Is Essential for Death Receptor Ligands' Apoptotic and Synergistic Effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion

    Get PDF
    Poster presentation: Here we investigated the role of the amyloid precursor protein (APP) in regulation of Ca2+ store depletion-induced neural cell death. Ca2+ store depletion from the endoplasmic reticulum (ER) was induced by the SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase) inhibitor thapsigargin which led to a rapid induction of the unfolded protein response (UPR) and a delayed activation of executioner caspases in the cultures. Overexpression of APP potently enhanced cytosolic Ca2+ levels and cell death after ER Ca2+ store depletion in comparison to vector-transfected controls. GeneChipR and RT-PCR analysis revealed that the expression of classical UPR chaperone genes was not altered by overexpression of APP.Interestingly, the induction of the ER stress-responsive pro-apoptotic transcription factor CHOP was significantly upregulated in APP-overexpressing cells in comparison to vectortransfected controls. Chelation of intracellular Ca2+ with BAPTA-AM revealed that enhanced CHOP expression after store depletion occured in a Ca2+-dependent manner in APPoverexpressing cells. Prevention of CHOP induction by BAPTA-AM and by RNA interference was also able to abrogate the potentiating effect of APP on thapsigargin-induced apoptosis. Application of the store-operated channel (SOC)-inhibitors SK F96365 and 2-APB downmodulated APP-triggered potentiation of cytosolic Ca2+ levels and apoptosis after treatment with thapsigargin. Our data demonstrate that APP-mediated regulation of ER Ca2+ homeostasis significantly modulates Ca2+ store depletion-induced cell death in a SOC- and CHOP-dependent manner, but independent of the UPR

    ATF4 links ER stress with reticulophagy in glioblastoma cells

    Get PDF
    Selective degradation of the endoplasmic reticulum (ER; reticulophagy) is a type of autophagy involved in the removal of ER fragments. So far, amino acid starvation as well as ER stress have been described as inducers of reticulophagy, which in turn restores cellular energy levels and ER homeostasis. Here, we explored the autophagy-inducing mechanisms that underlie the autophagic cell death (ACD)-triggering compound loperamide (LOP) in glioblastoma cells. Interestingly, LOP triggers upregulation of the transcription factor ATF4, which is accompanied by the induction of additional ER stress markers. Notably, knockout of ATF4 significantly attenuated LOP-induced autophagy and ACD. Functionally, LOP also specifically induces the engulfment of large ER fragments within autophagosomes and lysosomes as determined by electron and fluorescence microscopy. LOP-induced reticulophagy and cell death are predominantly mediated through the reticulophagy receptor RETREG1/FAM134B and, to a lesser extent, TEX264, confirming that reticulophagy receptors can promote ACD. Strikingly, apart from triggering LOP-induced autophagy and ACD, ATF4 is also required for LOP-induced reticulophagy. These observations highlight a key role for ATF4, RETREG1 and TEX264 in response to LOP-induced ER stress, reticulophagy and ACD, and establish a novel mechanistic link between ER stress and reticulophagy, with possible implications for additional models of drug-induced ER stress

    Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells

    Get PDF
    Autophagy is a well-described degradation mechanism that promotes cell survival upon nutrient starvation and other forms of cellular stresses. In addition, there is growing evidence showing that autophagy can exert a lethal function via autophagic cell death (ACD). As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs. Therefore, we screened a library containing 70 autophagy-inducing compounds to induce ATG5-dependent cell death in human MZ-54 GBM cells. Here, we identified three compounds, i.e. loperamide, pimozide, and STF-62247 that significantly induce cell death in several GBM cell lines compared to CRISPR/Cas9-generated ATG5- or ATG7-deficient cells, pointing to a death-promoting role of autophagy. Further cell death analyses conducted using pharmacological inhibitors revealed that apoptosis, ferroptosis, and necroptosis only play minor roles in loperamide-, pimozide- or STF-62247-induced cell death. Intriguingly, these three compounds induce massive lipidation of the autophagy marker protein LC3B as well as the formation of LC3B puncta, which are characteristic of autophagy. Furthermore, loperamide, pimozide, and STF-62247 enhance the autophagic flux in parental MZ-54 cells, but not in ATG5 or ATG7 knockout (KO) MZ-54 cells. In addition, loperamide- and pimozide-treated cells display a massive formation of autophagosomes and autolysosomes at the ultrastructural level. Finally, stimulation of autophagy by all three compounds is accompanied by dephosphorylation of mammalian target of rapamycin complex 1 (mTORC1), a well-known negative regulator of autophagy. In summary, our results indicate that loperamide, pimozide, and STF-62247 induce ATG5- and ATG7-dependent cell death in GBM cells, which is preceded by a massive induction of autophagy. These findings emphasize the lethal function and potential clinical relevance of hyperactivated autophagy in GBM
    corecore