97 research outputs found

    Intensification of precipitation extremes in the world's humid and water-limited regions

    Get PDF
    Changes in precipitation totals and extremes are among the most relevant consequences of climate change, but in particular regional changes remain uncertain. While aggregating over larger regions reduces the noise in time series and typically shows increases in the intensity of precipitation extremes, it has been argued that this may not be the case in water-limited regions. Here we investigate long-term changes in annual precipitation totals and extremes aggregated over the world's humid, transitional, and dry regions as defined by their climatological water availability. We use the globally most complete observational datasets suitable for the analysis of daily precipitation extremes, and data from global climate model simulations. We show that precipitation totals and extremes have increased in the humid regions since the mid-20th century. Conversely, despite showing tendencies to increase, no robust changes can be detected in the drier regions, in part due to the large variability of precipitation and sparse observational coverage particularly in the driest regions. Future climate simulations under increased radiative forcing indicate total precipitation increases in more humid regions but no clear changes in the more arid regions, while precipitation extremes are more likely to increase than to decrease on average over both the humid and arid regions of the world. These results highlight the increasing risk of heavy precipitation in most regions of the world, including water-limited regions, with implications for related impacts through flooding risk or soil erosion.This study was funded by the Australian Research Council (ARC) grant DE150100456. MGD acknowledges additional funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 grant reference RYC-2017-22964; AMU acknowledges funding from the ARC Centre of Excellence for Climate Extremes (CE170100023)

    Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations

    Get PDF
    Knowledge about long-term changes in climate extremes is vital to better understand multidecadal climate variability and long-term changes and to place today’s extreme events in a historical context. While global changes in temperature and precipitation extremes since the midtwentieth century are well studied, knowledge about century-scale changes is limited. This paper analyses a range of largely independent observations-based data sets covering 1901–2010 for long-term changes and interannual variability in daily scale temperature and precipitation extremes. We compare across data sets for consistency to ascertain our confidence in century-scale changes in extremes. We find consistent warming trends in temperature extremes globally and in most land areas over the past century. For precipitation extremes we find global tendencies toward more intense rainfall throughout much of the twentieth century; however, local changes are spatially more variable. While global time series of the different data sets agree well after about 1950, they often show different changes during the first half of the twentieth century. In regions with good observational coverage, gridded observations and reanalyses agree well throughout the entire past century. Simulations with an atmospheric model suggest that ocean temperatures and sea ice may explain up to about 50% of interannual variability in the global average of temperature extremes, and about 15% in the global average of moderate precipitation extremes, but local correlations are mostly significant only in low latitudes

    Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics

    Get PDF
    Cold extremes are anticipated to warm at a faster rate than both hot extremes and average temperatures for much of the Northern Hemisphere. Anomalously warm cold extremes can affect numerous sectors, including human health, tourism and various ecosystems that are sensitive to cold temperatures. Using a selection of global climate models, this paper explores the accelerated warming of seasonal cold extremes relative to seasonal mean temperatures in the Northern Hemisphere extratropics. The potential driving physical mechanisms are investigated by assessing conditions on or prior to the day when the cold extreme occurs to understand how the different environmental fields are related. During winter, North America, Europe and much of Eurasia show amplified warming of cold extremes projected for the late 21st century, compared to the mid-20th century. This is shown to be largely driven by reductions in cold air temperature advection, suggested as a likely consequence of Arctic amplification. In spring and autumn, cold extremes are expected to warm faster than average temperatures for most of the Northern Hemisphere mid-latitudes to high latitudes, particularly Alaska, northern Canada and northern Eurasia. In the shoulder seasons, projected decreases in snow cover and associated reductions in surface albedo are suggested as the largest contributor affecting the accelerated rates of warming in cold extremes. The key findings of this study improve our understanding of the environmental conditions that contribute to the accelerated warming of cold extremes relative to mean temperatures.This study was supported by the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (grant CE170100023). Markus G. Donat received funding from the ARC (grant DE150100456) and the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 grant reference RYC-2017-22964. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making their model output available.Peer ReviewedPostprint (published version

    A multiregion model evaluation and attribution study of historical changes in the area affected by temperature and precipitation extremes

    Get PDF
    The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario

    Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes

    Get PDF
    The oceans are a well-known source of natural variability in the climate system, although their ability to account for inter-annual variations of temperature and precipitation extremes over land remains unclear. In this study, the role of sea-surface temperature (SST)-forcing is investigated for variability and trends in a range of commonly used temperature and precipitation extreme indices over the period 1959 to 2013. Using atmospheric simulations forced by observed SST and sea-ice concentrations (SIC) from three models participating in the Climate of the Twentieth Century Plus (C20C+) Project, results show that oceanic boundary conditions drive a substantial fraction of inter-annual variability in global average temperature extreme indices, as well as, to a lower extent, for precipitation extremes. The observed trends in temperature extremes are generally well captured by the SST-forced simulations although some regional features such as the lack of warming in daytime warm temperature extremes over South America are not reproduced in the model simulations. Furthermore, the models simulate too strong increases in warm day frequency compared to observations over North America. For extreme precipitation trends, the accuracy of the simulated trend pattern is regionally variable, and a thorough assessment is difficult due to the lack of locally significant trends in the observations. This study shows that prescribing SST and SIC holds potential predictability for extremes in some (mainly tropical) regions at the inter-annual time-scale

    Bid Participates in Genotoxic Drug-Induced Apoptosis of HeLa Cells and Is Essential for Death Receptor Ligands' Apoptotic and Synergistic Effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    Extreme rainfall variability in Australia: Patterns, drivers and predictability

    Get PDF
    Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool-season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. Tropical cyclone activity is observed to have significant relationships with some warm season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year

    Allowable CO2 emissions based on regional and impact-related climate targets

    Get PDF
    © 2016 Macmillan Publishers Limited. All rights reserved. Global temperature targets, such as the widely accepted limit of an increase above pre-industrial temperatures of two degrees Celsius, may fail to communicate the urgency of reducing carbon dioxide (CO2) emissions. The translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because such targets are more directly aligned with individual national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean

    Anthropogenic Warming Had a Crucial Role in Triggering the Historic and Destructive Mediterranean Derecho in Summer 2022

    Get PDF
    A record-breaking marine heatwave and anthropogenic climate change have substantially contributed to the development of an extremely anomalous and vigorous convective windstorm in August 2022 over the Mediterranean Sea
    • …
    corecore