21 research outputs found

    Self-Assembly of Proteinaceous Multishell Structures Mediated by a Supercharged Protein

    No full text
    Engineered variants of the capsid-forming enzyme lumazine synthase can exploit electrostatic interactions to encapsulate complementarily charged guest macromolecules. Here we investigate the effect of ionic strength and cargo molecules on assembly of AaLS-13, a negatively supercharged lumazine synthase protein cage, and we show that multishell structures are produced upon mixing the capsid core with free capsomers and a positively supercharged variant of the green fluorescent protein GFP­(+36). The assembly process is mediated by favorable electrostatic interactions between the negatively charged capsid shells/capsomers and GFP­(+36) molecules, and it is therefore strongly dependent on ionic strength. The mechanism of formation of these assemblages is likely similar to the assembly of multishell structures of some virus-like particles, where outer shells organize as nonicosahedral structures with larger radii of curvature than the templating inner shell. In contrast to the viral multishell structures, the positively charged mediator was found to be essential for the assembly of multilayered structures of different shapes and sizes constituted of AaLS-13 capsomers. This mediator-bridging approach may be widely applicable to create protein-based hierarchical nanostructures for various nanotechnology applications such as drug delivery and bioimaging

    Diffusion-Limited Cargo Loading of an Engineered Protein Container

    No full text
    The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host–guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid–cargo complexes generated by other encapsulation systems

    Diversification of Protein Cage Structure Using Circularly Permuted Subunits

    No full text
    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from <i>Aquifex aeolicus</i> (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in <i>Escherichia coli</i> to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins

    Enantiocomplementary Synthesis of γ‑Nitroketones Using Designed and Evolved Carboligases

    No full text
    Artificial enzymes created by computational design and directed evolution are versatile biocatalysts whose promiscuous activities represent potentially attractive starting points for divergent evolution in the laboratory. The artificial aldolase RA95.5-8, for example, exploits amine catalysis to promote mechanistically diverse carboligations. Here we report that RA95.5-8 variants catalyze the asymmetric synthesis of γ-nitroketones via two alternative enantiocomplementary Michael-type reactions: enamine-mediated addition of acetone to nitrostyrenes, and nitroalkane addition to conjugated ketones activated as iminium ions. In addition, a cascade of three aldolase-catalyzed reactions enables one-pot assembly of γ-nitroketones from three simpler building blocks. Together, our results highlight the chemical versatility of artificial aldolases for the practical synthesis of important chiral synthons

    Efficient in Vitro Encapsulation of Protein Cargo by an Engineered Protein Container

    No full text
    An engineered variant of lumazine synthase, a nonviral capsid protein with a negatively charged luminal surface, is shown to encapsulate up to 100 positively supercharged green fluorescent protein (GFP) molecules in vitro. Packaging can be achieved starting either from intact, empty capsids or from capsid fragments by incubation with cargo in aqueous buffer. The yield of encapsulated GFP correlates directly with the host/guest mixing ratio, providing excellent control over packing density. Facile in vitro loading highlights the unusual structural dynamics of this novel nanocontainer and should facilitate diverse biotechnological and materials science applications

    Substrate Sorting by a Supercharged Nanoreactor

    No full text
    Compartmentalization of proteases enables spatially and temporally controlled protein degradation in cells. Here we show that an engineered lumazine synthase protein cage, which possesses a negatively supercharged lumen, can exploit electrostatic effects to sort substrates for an encapsulated protease. This proteasome-like nanoreactor preferentially cleaves positively charged polypeptides over both anionic and zwitterionic substrates, inverting the inherent substrate specificity of the guest enzyme approximately 480 fold. Our results suggest that supercharged nanochambers could provide a simple and potentially general means of conferring substrate specificity to diverse encapsulated catalysts

    Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme

    No full text
    The simple catalytic motifs utilized by enzymes created by computational design and directed evolution constitute a potentially valuable source of chemical promiscuity. Here we show that the artificial retro-aldolase RA95.5-8 is able to use a reactive lysine in a hydrophobic pocket to accelerate promiscuous Knoevenagel condensations of electron-rich aldehydes and activated methylene donors. Optimization of this activity by directed evolution afforded an efficient enzyme variant with a catalytic proficiency of 5 × 10<sup>11</sup> M<sup>–1</sup> and a >10<sup>8</sup>-fold catalytic advantage over simple primary and secondary amines. Divergent evolution of de novo enzymes in this way could be a promising strategy for creating tailored biocatalysts for many synthetically useful reactions

    Rational Engineering of a Designed Protein Cage for siRNA Delivery

    No full text
    Oligonucleotide therapeutics have transformative potential in modern medicine but are poor drug candidates in themselves unless fitted with compensatory carrier systems. We describe a simple approach to transform a designed porous protein cage into a nucleic acid delivery vehicle. By introducing arginine mutations to the lumenal surface, a positively supercharged capsule is created, which can encapsidate oligonucleotides in vitro with high binding affinity. We demonstrate that the siRNA-loaded cage is taken up by mammalian cells and releases its cargo to induce RNAi and knockdown gene expression. These general concepts could also be applied to alternative scaffold designs, expediting the development of artificial protein cages toward delivery applications

    Harnessing Protein Symmetry for Enzyme Design

    No full text
    Cyclic protein oligomers are common in Nature. Here we show that the central pore of the pentameric ring-forming protein lumazine synthase from <i>Saccharomyces cerevisiae</i> (ScLS) can be rationally engineered to catalyze a retro-aldol reaction. The <i>C</i><sub>5</sub>-symmetry of the complex was exploited to equip the protein tunnel with a ring of five closely spaced lysines adjacent to an apolar site for substrate binding. The resulting system utilizes amine catalysis to promote the cleavage of (±)-methodol to 6-methoxy-2-naphthaldehyde and acetone with a >10<sup>3</sup>-fold rate acceleration. The ease of organizing convergent functional groups within a protein pore may make the tunnels of many symmetric ring-shaped proteins useful starting points for creating designer enzymes

    Modular Protein Cages for Size-Selective RNA Packaging in Vivo

    No full text
    Protein cages have recently emerged as an important platform for nanotechnology development. Of the naturally existing protein cages, viruses are among the most efficient nanomachines, overcoming various barriers to achieve component replication and efficient self-assembly in complex biological milieu. We have designed an artificial system that can carry out the most basic steps of viral particle assembly <i>in vivo</i>. Our strategy is based on patchwork capsids formed from <i>Aquifex aeolicus</i> lumazine synthase and a circularly permuted variant with appended cationic peptides. These two-component protein containers self-assemble <i>in vivo</i>, capturing endogenous RNA molecules in a size-selective manner. By varying the number and design of the RNA-binding peptides displayed on the lumenal surface, the length of guest RNA can be further controlled. Using a fluorescent aptamer, we also show that short-lived RNA species are captured by the protein cage. This platform has potential as a model system for investigating virus assembly, as well as developing RNA regulation or sampling tools to augment biotechnology
    corecore