21 research outputs found

    Kepler Mission Design, Realized Photometric Performance, and Early Science

    Full text link
    The Kepler Mission, launched on Mar 6, 2009 was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just forty-three days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.Comment: 16 pages, 5 figures, 1 table 26 Jan revision replaced Subject headings with keywords from approved lis

    Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data

    Get PDF
    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (Rp < 1.25 R⊕), 288 super-Earth-size (1.25 R⊕ ≤ R p < 2 R⊕), 662 Neptune-size (2 R ⊕ ≤ Rp < 6 R⊕), 165 Jupiter-size (6 R⊕ ≤ Rp < 15 R ⊕), and 19 up to twice the size of Jupiter (15 R ⊕ ≤ Rp < 22 R⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems

    A revised checklist of the stoneflies (Plecoptera) of west virginia (USA)

    No full text
    Volume: 108Start Page: 429End Page: 44
    corecore