1,025 research outputs found

    The Cosmic Ray - X-ray Connection: Effects of Nonlinear Shock Acceleration on Photon Production in SNRs

    Get PDF
    Cosmic-ray production in young supernova remnant (SNR) shocks is expected to be efficient and strongly nonlinear. In nonlinear, diffusive shock acceleration, compression ratios will be higher and the shocked temperature lower than test-particle, Rankine-Hugoniot relations predict. Furthermore, the heating of the gas to X-ray emitting temperatures is strongly coupled to the acceleration of cosmic-ray electrons and ions, thus nonlinear processes which modify the shock, influence the emission over the entire band from radio to gamma-rays and may have a strong impact on X-ray line models. Here we apply an algebraic model of nonlinear acceleration, combined with SNR evolution, to model the radio and X-ray continuum of Kepler's SNR.Comment: 7 pages including 4 figures; to appear in ``The Acceleration and Transport of Energetic Particles Observed in the Heliosphere,'' Proceedings of the ACE-2000 Symposium held on January 5 - 8, 2000, Indian Springs, C

    Electron and Ion Acceleration in Relativistic Shocks with Applications to GRB Afterglows

    Get PDF
    We have modeled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parameterizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at nonthermal thermal energies to above PeV energies, including the nonlinear smoothing of the shock structure due to cosmic-ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parameterize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse-Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of gamma-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the nonlinear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these nonlinear effects should be qualitatively similar as long as the scattering mean free path is an increasing function of momentum.Comment: Accepted for publication in MNRA

    Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    Get PDF
    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales > 100pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.Comment: 13 pages, including 2 figures, using apjgalley format; to appear in the January 10, 2000 issue, of the Astrophysical Journa

    Acceleration of positrons in supernova shocks

    Get PDF
    During this project we investigated the acceleration of leptons (electrons and positrons) in collisionless shock waves. In particular, we were interested in how leptons are accelerated in the blast waves existing in the remnants of supernova explosions. Supernova remnants (SNRs) have long been considered as the most likely source of galactic cosmic rays but no definite connection between SNRs and the cosmic rays seen at earth can be made. Only by understanding lepton acceleration in shocks can the rich SNR data base be properly used to understand cosmic ray origins. Our project was directed at the neglected aspects of lepton acceleration. We showed that the efficiency of lepton acceleration depended critically on the lepton injection energy. We showed that, even when infection effects are not important, that proton and lepton distribution functions produced by shocks are quite different in the critical energy range for producing the observed synchrotron emission. We also showed that transrelativistic effects produced proton spectra that were not in agreement with standard results from radio observations, but that the lepton spectra were, in fact, consistent with observations. We performed simulations of relativistic shocks (shocks where the flow speed is a sizable fraction of the speed of light) and discovered some interesting effects. We first demonstrated the power of the Monte Carlo technique by determining the shock jump conditions in relativistic shocks. We then proceeded to determine how relativistic shocks accelerate particles. We found that nonlinear relativistic shocks treat protons and leptons even more differently than nonrelativistic shocks. The transrelativistic effects on the shock structure from the heavy ion component reduces the lepton acceleration to a tiny fraction of the ion acceleration. This effect is dramatic even if high energy leptons (many times thermal energy) are injected, and was totally unexpected. Our results have important consequences for astrophysical environments expected to harbor relativistic flows such as extra-galactic radio sources and accretion onto compact objects
    corecore