347 research outputs found

    B847: Review of Potential Pasteurization Methods for Apple Cider

    Get PDF
    The main focus of this paper is to review the pasteurization methods that can be applied to the needs of the apple industry and to recommend further research. In addition to the review of methods, we conducted a sensory evaluation of cider to evaluate the acceptability of various pasteurized samples. This review of potential methods for product treatment will serve as an informative study with recommendations for future processing. Although not an exhaustive survey, conventional methods and the most promising new techniques are discussed.https://digitalcommons.library.umaine.edu/aes_bulletin/1008/thumbnail.jp

    A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega_0 = 1

    Full text link
    We have observed the most distant (z=0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey, with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 +3.1/-2.2 keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass ~ 7.4 x 10^14 h^-1 solar masses, if the mean matter density in the universe equals the critical value, or larger if Omega_0 < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an Omega_0 = 1 universe. Combining the assumptions that Omega_0 = 1 and that the intial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that the probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10^{-5}. Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z>0.5z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and Omega_0 = 1, we find that each one is improbable at the < 10^{-2} level. These observations, along with the fact that these luminosities and temperatures of the high-zz clusters all agree with the low-z L_X-T_X relation, argue strongly that Omega_0 < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.Comment: 20 pages, 4 figures, To appear in 1 Aug 1998 ApJ (heavily revised version of original preprint

    Two Clusters with Radio-quiet Cooling Cores

    Full text link
    Radio lobes inflated by active galactic nuclei at the centers of clusters are a promising candidate for halting condensation in clusters with short central cooling times because they are common in such clusters. In order to test the AGN-heating hypothesis, we obtained Chandra observations of two clusters with short central cooling times yet no evidence for AGN activity: Abell 1650 and Abell 2244. The cores of these clusters indeed appear systematically different from cores with more prominent radio emission. They do not have significant central temperature gradients, and their central entropy levels are markedly higher than in clusters with stronger radio emission, corresponding to central cooling times ~ 1 Gigayear. Also, there is no evidence for fossil X-ray cavities produced by an earlier episode of AGN heating. We suggest that either (1) the central gas has not yet cooled to the point at which feedback is necessary to prevent it from condensing, possibly because it is conductively stabilized, or (2) the gas experienced a major heating event ≳1\gtrsim 1 Gyr in the past and has not required feedback since then. The fact that these clusters with no evident feedback have higher central entropy and therefore longer central cooling times than clusters with obvious AGN feedback strongly suggests that AGNs supply the feedback necessary to suppress condensation in clusters with short central cooling times.Comment: ApJ Letter, in pres

    Two Clusters of Galaxies with Radio-quiet Cooling Cores

    Get PDF
    Radio lobes inflated by active galactic nuclei at the centers of clusters are a promising candidate for halting condensation in clusters with short central cooling times because they are common in such clusters. In order to test the AGNheating hypothesis, we obtained Chandra observations of two clusters with short central cooling times yet no evidence for AGN activity: Abell 1650 and Abell 2244. The cores of these clusters indeed appear systematically different from cores with more prominent radio emission. They do not have significant central temperature gradients, and their central entropy levels are markedly higher than in clusters with stronger radio emission, corresponding to central cooling times ~ 1 Gyr. Also, there is no evidence for fossil X-ray cavities produced by an earlier episode of AGN heating. We suggest that either (1) the central gas has not yet cooled to the point at which feedback is necessary to prevent it from condensing, possibly because it is conductively stabilized, or (2) the gas experienced a major heating event & \u3e~ Gyr in the past and has not required feedback since then. The fact that these clusters with no evident feedback have higher central entropy and therefore longer central cooling times than clusters with obvious AGN feedback strongly suggests that AGNs supply the feedback necessary to suppress condensation in clusters with short central cooling times (Refer to PDF file for exact formulas)

    Star Formation, Radio Sources, Cooling X-ray Gas, and Galaxy Interactions in the Brightest Cluster Galaxy in 2A0335+096

    Full text link
    We present deep emission-line imaging taken with the SOAR Optical Imaging Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA, Chandra X-ray, and XMM UV data. 2A0335+096 is a bright, cool-core X-ray cluster, once known as a cooling flow. Within the highly disturbed core revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured optical emission-line system. The redshift of the companion is within 100 km/s of the BCG and has certainly interacted with the BCG, and is likely bound to it. The comparison of optical and radio images shows curved filaments in H-alpha emission surrounding the resolved radio source. The velocity structure of the emission-line bar between the BCG nucleus and the companion galaxy provides strong evidence for an interaction between the two in the last ~50 Myrs. The age of the radio source is similar to the interaction time, so this interaction may have provoked an episode of radio activity. We estimate a star formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a rate similar to, but somewhat lower than, the revised X-ray cooling rate of 10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The Halpha nebula is limited to a region of high X-ray surface brightness and cool X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie in the BCG. The estimated age of the radio lobes and their interaction with the optical emission-line gas, the estimated timescale for depletion and accumulation of cold gas, and the dynamical time in the system are all similar, suggesting a common trigger mechanism.Comment: Accepted AJ, July 2007 publication. Vol 134, p. 14-2

    Omega-Matter from the Temperature-Redshift Distribution of EMSS Clusters of Galaxies

    Full text link
    We constrain Omega_m through a maximum likelihood analysis of temperatures and redshifts of the high-redshift clusters from the EMSS. We simultaneously fit the low-redshift Markevitch (1998) sample (an all-sky sample from ROSAT with z=0.04- 0.09), a moderate redshift EMSS sample from Henry (1997) (9 clusters with z=0.3- 0.4), and a more distant EMSS sample (5 clusters with z=0.5-0.83 from Donahue et al. 1999) finding best-fit values of Omega_m = 0.45+/-0.1 for an open universe and Omega_m=0.27+/-0.1 for a flat universe. We analyze the effects of our governing assumptions, including the evolution and dispersion of the cluster L-T relation, the evolution and dispersion of the cluster M-T relation, the choice of low-redshift cluster sample, and the accuracy of the standard Press-Schechter formalism. We examine whether the existence of the massive distant cluster MS1054-0321 skews our results and find its effect to be small. From our maximum likelihood analysis we conclude that our results are not very sensitive to our assumptions, and bootstrap analysis shows that our results are not sensitive to the current temperature measurement uncertainties. The systematic uncertainties are ~+/- 0.1, and Omega_m=1 universes are ruled out at greater than 99.7% (3 sigma confidence.Comment: 11 pages, 2 figures. Accepted to Astrophysical Journal Letters July 22, 199

    Infrared Emission from the Nearby Cool Core Cluster Abell 2597

    Full text link
    We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.Comment: Accepted at Ap

    HST viewing of spectacular star-forming trails behind ESO 137-001

    Full text link
    We present the results from the HST WFC3 and ACS data on an archetypal galaxy undergoing ram pressure stripping (RPS), ESO 137-001, in the nearby cluster Abell 3627. ESO 137-001 is known to host a prominent stripped tail detected in many bands from X-rays, Halpha to CO. The HST data reveal significant features indicative of RPS such as asymmetric dust distribution and surface brightness as well as many blue young star complexes in the tail. We study the correlation between the blue young star complexes from HST, HII regions from Halpha (MUSE) and dense molecular clouds from CO (ALMA). The correlation between the HST blue star clusters and the HII regions is very good, while their correlation with the dense CO clumps are typically not good, presumably due in part to evolutionary effects. In comparison to the Starburst99+Cloudy model, many blue regions are found to be young (< 10 Myr) and the total star formation (SF) rate in the tail is 0.3 - 0.6 M_Sun/yr for sources measured with ages less than 100 Myr, about 40% of the SF rate in the galaxy. We trace SF over at least 100 Myr and give a full picture of the recent SF history in the tail. We also demonstrate the importance of including nebular emissions and a nebular to stellar extinction correction factor when comparing the model to the broadband data. Our work on ESO 137-001 demonstrates the importance of HST data for constraining the SF history in stripped tails.Comment: 21 pages, 19 figures, 4 tables, re-submitted to MNRAS (initial submission on Aug. 4, 2022
    • …
    corecore