74 research outputs found
Modeling the spectral shape of absorption by chromophoric dissolved organic matter
A single exponential model of the form ag(λ)∝e -seλ was evaluated in the context of its application and interpretation in describing absorption by chromophoric dissolved organic matter (CDOM), ag, as a function of wavelength, λ. The spectral slope, se, is often used as a proxy for CDOM composition, including the ratio of fulvic to humic acids and molecular weight. About three-quarters of the variability in se values from the literature could be explained by the different spectral ranges used in each study. Dependency on different spectral ranges resulted from the relatively weak performance of the single exponential as a descriptor of ag(λ) in comparison to other models that allow for greater spectral curvature. Consequently, actual variability in the spectral shape of absorption, and thus the composition of CDOM, from widely varying water types appears less than currently thought. The usefulness of five other models in describing CDOM absorption spectra in the visible domain was also evaluated. Six data sets collected with an ac9 in-situ spectrophotometer from around the coastal United States were used in the analysis. All models considered performed better than the conventional single exponential model, with the exception of a double exponential model, where the second exponential term contributed little new information in the fit. Statistically, the most useful model (judged by an analysis of variance) in the visible range was a hyperbolic model of the form: a g(λ)∝λ-sh. Although the hyperbolic model was less dependent on the spectral range used in the fit, some dependency remained. The most representative model for describing ag(λ) from the six regions considered in this study, with ag at 412 nm as input, was: ag(λ)=ag(412)(λ/412) -6.92. This spectral relationship may be suitable for remote sensing semi-analytical models which must compute a spectrum from a single estimate of CDOM absorption in the blue derived from a remotely sensed water-leaving radiance signal
Thin layers and camouflage: hidden \u3cem\u3ePseudo-nitzschia\u3c/em\u3e spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA
Two sets of observations were made on the distribution of Pseudo-nitzschia taxa in a fjord in the San Juan Islands, Washington, USA. From May 21 to 31, 1996, we observed the spatio-temporal distribution of a dense bloom of P. fraudulenta. Microscopic observations of live material were compared to physical-optical water-column structure, currents and wind. At the start of the study, dense concentrations of Pseudo-nitzschia spp. were observed directly at the surface. Optical profiles indicated that most cells were concentrated in a thin layer at ~5 m depth, which appeared to be contiguous throughout the sound. Several days later, sustained winds forced a plume of lighter water over the surface of the sound, displacing the original water mass, with its entrained flora, to depth. The resulting near-bottom thin layer persisted for several days, and contained \u3e106 Pseudo-nitzschia spp. cells l-1. Microscopic examination of live cells from the deep layer revealed that colonies were alive and motile. In 1996 and again in 1998, we observed P. pseudodelicatissima living within colonies of Chaetoceros socialis. Water-column thin layers, near-bottom thin layers and populations of Pseudo-nitzschia spp. within C. socialis colonies could easily escape detection by routine monitoring procedures, and may be a potential source of unexplained toxicity events
Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9
Measuring coastal and oceanic absorption coefficients of dissolved and particulate matter in the visible domain usually requires a methodology for amplifying the natural signal because conventional spectrophotometers lack the necessary sensitivity. The WET Labs ac-9 is a recently developed in situ absorption and attenuation meter with a precision better than ±0.001 m−1 in the raw signal, which is sufficient to make these measurements in pristine samples. Whereas the superior sensitivity of the ac-9 has been well documented, the accuracy of in situ measurements for bio-optical applications has not been rigorously evaluated.
Obtaining accurate results with an ac-9 requires careful attention to calibration procedures because baselines drift as a result of the changing optical properties of several ac-9 components. To correct in situ measurements for instrument drift, a pressurized flow procedure was developed for calibrating an ac-9 with optically clean water. In situ, micro- (cm) to fine- (m) scale vertical profiles of spectral total absorption, at(λ), and spectral absorption of dissolved materials, ag(λ), were then measured concurrently using multiple meters, corrected for drift, temperature, salinity, and scattering errors and subsequently compared. Particulate absorption, ap(λ), was obtained from at(λ) − ag(λ). CTD microstructure was simultaneously recorded. Vertical profiles of ag(λ), at(λ), and ap(λ) were replicated with different meters within ±0.005 m−1, and spectral relationships compared well with laboratory measurements and hydrographic structure
Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes
In 1996 three cruises were conducted to simultaneously quantify the fine-scale optical and physical structure of the water column. Data from 120 profiles were used to investigate the temporal occurrence and spatial distribution of thin layers of phytoplankton as they relate to variations in physical processes. Thin layers ranged in thickness from a few centimeters to a few meters. They may extend horizontally for kilometers and persist for days. Thin layers are a recurring feature in the marine environment; they were observed and measured in 54% of our profiles. Physical processes are important in the temporal and spatial distribution of thin layers. Thin layer depth was closely associated with depth and strength of the pycnocline. Over 71% of all thin layers were located at the base of, or within, the pycnocline. The strong statistical relationships between thin layers and physical structure indicate that we cannot understand thin layer dynamics without understanding both local circulation patterns and regional physical forcing
Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study
The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1β and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1β and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal−Wallis analysis of variance with Dunn’s multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences (P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1β determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface
Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord
Huge accumulations of diatom-dominated marine snow (aggregates \u3e0.5 mm in diameter) were observed in a layer approximately 50 cm thick persisting over a 24 h period in a shallow fjord in the San Juan Islands, Washington, USA. The layer was associated with the 22.4 σt density surface. A second thin layer of elevated phytoplankton concentration located at a density discontinuity 1.5 to 2 m above the marine snow layer occurred within a dense diatom bloom near the surface. At the end of the study period, isopycnals shoaled and the 2 layers merged. More than 80% of the diatom bloom consisted of Thalassiosira spp. (50 to 59%), Odontella longicruris (5 to 14%), Asterionellopsis glacialis, and Thalassionema nitzschioides. A much higher proportion of O. longicruris occurred in marine snow (about 53%) than among suspended cells suggesting that this species differentially aggregated. Most zooplankton avoided the mucus-rich aggregate layer. The layer of marine snow was formed when sinking aggregated diatoms reached neutral buoyancy at the 22.4 isopycnal, probably due to the presence of low salinity mucus resistant to salt exchange in the interstices of the aggregates. Rates of turbulent kinetic energy dissipation throughout the water column rarely exceeded 10-8 m2 s-3 and aggregates below the thin layer were largely detrital in composition indicating that small-scale shears due to turbulence did not erode the layer of marine snow. The accumulation of marine snow and phytoplankton in persistent, discrete layers at density discontinuities results in habitat partitioning of the pelagic zone, impacts the distribution and interactions of planktonic organisms as well as the intensity and location of biological processes in the water column, and helps maintain species diversity
Noise level correlates with manatee use of foraging habitats
Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 121 (2007): 3011-3020, doi:10.1121/1.2713555.The introduction of anthropogenic sound to coastal waters is a negative side effect of population growth. As noise from boats, marine construction, and coastal dredging increases, environmental and behavioral monitoring is needed to directly assess the effect these phenomena have on marine animals. Acoustic recordings, providing information on ambient noise levels and transient noise sources, were made in two manatee habitats: grassbeds and dredged habitats. Recordings were made over two 6-month periods from April to September in 2003 and 2004. Noise levels were calculated in one-third octave bands at nine center frequencies ranging from 250 Hz to 64 kHz. Manatee habitat usage, as a function of noise level, was examined during four time periods: morning, noon, afternoon, and night. Analysis of sightings data in a variety of grassbeds of equal species composition and density indicate that manatees select grassbeds with lower ambient noise for frequencies below 1 kHz. Additionally, grassbed usage was negatively correlated with concentrated boat presence in the morning hours; no correlation was observed during noon and afternoon hours. This suggests that morning boat presence and its associated noise may affect the use of foraging habitat on a daily time scale.This research was supported by a P.E.O. Scholar Award and National Defense Science and Engineering Graduate Fellowship awarded to Jennifer Miksis
A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C10020, doi:10.1029/2009JC005317.A synthetic moored array composed of five buoyancy-propelled autonomous underwater gliders was used to characterize mesoscale variability and phytoplankton distribution in a 100 km × 100 km domain in the Philippine Sea east of Luzon Strait for 10 days in May 2004. The study area, located east of the Kuroshio near the subtropical front, is dominated by strong internal tides, by energetic westward-propagating mesoscale eddies with azimuthal velocities exceeding 50 cm/s, and by a deep (130 m) maximum in chlorophyll fluorescence. Each glider in the array was instructed to maintain geographic position while repeatedly profiling to 200-m depth. Good station-keeping performance enabled the resulting series of vertical profiles to be interpreted in the same manner as a physically moored chain of instruments. Although organized primarily as a demonstration of glider capabilities, this field exercise provides a unique data set for examining biological-physical interactions in the open ocean. Here we report on the evolution of a thin layer of phytoplankton observed near the deep chlorophyll maximum. Coincident observations of fine structure in temperature and salinity suggest that the thinning process of this layer was driven primarily by physical forcing, most probably vertical shear associated with energetic diurnal internal waves, as opposed to a biological mechanism, such as convergent swimming, grazing, or spatial variation in growth rate.The Office of Naval Research provided
support for fieldwork and analysis through grants N-00014-00-1-0256 and
N-00014-05-1-0367
Recommended from our members
Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9
Measuring coastal and oceanic absorption coefficients of dissolved and particulate matter in the visible domain usually requires a methodology for amplifying the natural signal because conventional spectrophotometers lack the necessary sensitivity. The WET Labs ac-9 is a recently developed in situ absorption and attenuation meter with a precision better than ±0.001 m⁻¹ in the raw signal, which is sufficient to make these measurements in pristine samples. Whereas the superior sensitivity of the ac-9 has been well documented, the accuracy of in situ measurements for bio-optical applications has not been rigorously evaluated.
Obtaining accurate results with an ac-9 requires careful attention to calibration procedures because baselines drift as a result of the changing optical properties of several ac-9 components. To correct in situ measurements for instrument drift, a pressurized flow procedure was developed for calibrating an ac-9 with optically clean water. In situ, micro- (cm) to fine- (m) scale vertical profiles of spectral total absorption, a[subscript]t(λ), and spectral absorption of dissolved materials, a[subscript]g(λ), were then measured concurrently using multiple meters, corrected for drift, temperature, salinity, and scattering errors and subsequently compared. Particulate absorption, a[subscript]p(λ), was obtained from a[subscript]t(λ) − a[subscript]g(λ). CTD microstructure was simultaneously recorded. Vertical profiles of a[subscript]g(λ), a[subscript]t(λ), and a[subscript]p(λ) were replicated with different meters within ±0.005 m⁻¹, and spectral relationships compared well with laboratory measurements and hydrographic structur
Recommended from our members
Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range
The temperature and salt dependencies of absorption by liquid water (H₂O) and heavy water (D₂O) were
determined using a hyperspectral absorption and attenuation meter (WET Labs, AC-S). Sodium chloride
(NaCl) was used as a proxy for seawater salts. There was no significant temperature (ψₜ) or salt (ψₛ)
dependency of absorption at wavelengths 550 nm, ψₜ exhibited peaks at
~604, 662, and 740 nm. A small negative trough in ψₛ occurred at ~590 nm, followed by a small positive
peak ~620 nm, a larger negative trough at ~720 nm, and a strong positive peak at ~755 nm. The salt
dependency of absorption by heavy water, ψₛᴴ, exhibited a negative power-law shape with very low ψₛᴴ,
at wavelengths >550 nm. Our experiments with NaCl, clean open ocean seawater, and artificial seawater
support the hypothesis that salts modify the absorption spectra of seawater by modifying the molecular
matrix and vibrations of pure water
- …