13 research outputs found

    Alterations to cerebral perfusion, metabolite profiles, and neuronal morphology in the hippocampus and cortex of male and female mice during chronic exposure to a high-salt diet

    Get PDF
    Excess dietary salt reduces resting cerebral blood flow (CBF) and vascular reactivity, which can limit the fueling of neuronal metabolism. It is hitherto unknown whether metabolic derangements induced by high-salt-diet (HSD) exposure during adulthood are reversed by reducing salt intake. In this study, male and female mice were fed an HSD from 9 to 16 months of age, followed by a normal-salt diet (ND) thereafter until 23 months of age. Controls were continuously fed either ND or HSD. CBF and metabolite profiles were determined longitudinally by arterial spin labeling magnetic resonance imaging and magnetic resonance spectroscopy, respectively. HSD reduced cortical and hippocampal CBF, which recovered after dietary salt normalization, and affected hippocampal but not cortical metabolite profiles. Compared to ND, HSD increased hippocampal glutamine and phosphocreatine levels and decreased creatine and choline levels. Dietary reversal only allowed recovery of glutamine levels. Histology analyses revealed that HSD reduced the dendritic arborization and spine density of cortical and hippocampal neurons, which were not recovered after dietary salt normalization. We conclude that sustained HSD exposure throughout adulthood causes permanent structural and metabolic alterations to the mouse brain that are not fully normalized by lowering dietary salt during aging

    STAT3 inhibition with Galiellalactone effectively targets the prostate cancer stem-like cell population."

    Get PDF
    Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations
    corecore