30 research outputs found

    Tolfenamic Acid Inhibits Neuroblastoma Cell Proliferation And Induces Apoptosis: A Novel Therapeutic Agent For Neuroblastoma

    No full text
    Current therapeutic options for recurrent neuroblastoma have poor outcomes that warrant the development of novel therapeutic strategies. Specificity protein (Sp) transcription factors regulate several genes involved in cell proliferation, survival, and angiogenesis. Sp1 regulates genes believed to be important determinants of the biological behavior of neuroblastoma. Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to induce the degradation of Sp proteins and may serve as a novel anti-cancer agent. The objective of this investigation was to examine the anti-cancer activity of TA using established human neuroblastoma cell lines. We tested the anti-proliferative effect of TA using SH-SY5Y, CHLA90, LA1 55n, SHEP, Be2c, CMP 13Y, and SMS KCNR cell lines. Cells were treated with TA (0/25/50/100μM) and cell viability was measured at 24, 48, and 72h post-treatment. Selected neuroblastoma cell lines were treated with 50μM TA for 24 and 48h and tested for cell apoptosis using Annexin-V staining. Caspase activity was measured with caspase 3/7 Glo kit. Cell lysates were prepared and the expression of Sp1, survivin, and c-PARP were evaluated through Western blot analysis. TA significantly inhibited the growth of neuroblastoma cells in a dose/time-dependent manner and significantly decreased Sp1 and survivin expression. Apart from cell cycle (G0/G1) arrest, TA caused significant increase in the apoptotic cell population, caspase 3/7 activity, and c-PARP expression. These results show that TA effectively inhibits neuroblastoma cell growth potentially through suppressing mitosis, Sp1, and survivin expression, and inducing apoptosis. These results show TA as a novel therapeutic agent for neuroblastoma. © 2011 Wiley Periodicals, Inc

    The relative role of PLCβ and PI3Kγ in platelet activation

    No full text
    Stimulation of platelet G protein–coupled receptors results in the cleavage of phosphatidylinositol 4,5-trisphosphate (PIP2) into inositol 1,4,5-trisphosphate and 1,2-diacylglycerol by phospholipase C (PLCβ). It also results in the phosphorylation of PIP2 by the γ isoform of phosphatidylinositol 3-kinase (PI3Kγ) to synthesize phosphatidylinositol 3,4,5-trisphosphate. To understand the role of PIP2 in platelet signaling, we evaluated knock-out mice lacking 2 isoforms of PLCβ (PLCβ2 and PLCβ3) or lacking the Gβγ-activated isoform of PI3K (PI3Kγ). Both knock-out mice were unable to form stable thrombi in a carotid injury model. To provide a functional explanation, knock-out platelets were studied ex vivo. PLCβ2/β3–/– platelets failed to assemble filamentous actin, had defects in both secretion and mobilization of intracellular calcium, and were unable to form stable aggregates following low doses of agonists. Platelets lacking PI3Kγ disaggregated following low-dose adenosine diphosphate (ADP) and had a mildly impaired ability to mobilize intracellular calcium. Yet, they exhibited essentially normal actin assembly and secretion. Remarkably, both PLCβ2/β3–/– and PI3Kγ–/– platelets spread more slowly upon fibrinogen. These results suggest substantial redundancy in platelet signaling pathways. Nonetheless, the diminished ability of knock-out platelets to normally spread after adhesion and to form stable thrombi in vivo suggests that both PLCβ2/β3 and PI3Kγ play vital roles in platelet cytoskeletal dynamics

    Cellular and Organismal Toxicity of the Anti-Cancer Small Molecule, Tolfenamic Acid: a Pre-Clinical Evaluation

    Get PDF
    Background/Aims: The small molecule, Tolfenamic acid (TA) has shown anti-cancer activity in pre-clinical models and is currently in Phase I clinical trials at MD Anderson Cancer Center Orlando. Since specificity and toxicity are major concerns for investigational agents, we tested the effect of TA on specific targets, and assessed the cellular and organismal toxicity representing pre-clinical studies in cancer. Methods: Panc1, L3.6pl, and MiaPaCa-2 (pancreatic cancer), hTERT-HPNE(normal), and differentiated/un-differentiated SH-SY5Y (neuroblastoma) cells were treated with increasing concentrations of TA. Cell viability and effect on specific molecular targets, Sp1 and survivin were determined. Athymic nude mice were treated with vehicle or TA (50mg/kg, 3times/week for 6 weeks) and alterations in the growth pattern, hematocrit, and histopathology of gut, liver, and stomach were monitored. Results: TA treatment decreased cell proliferation and inhibited the expression of Sp1 and survivin in cancer cells while only subtle response was observed in normal (hTERT-HPNE) and differentiated SH-SY5Y cells. Mice studies revealed no effect on body weight and hematocrit. Furthermore, TA regimen did not cause signs of internal-bleeding or damage to vital tissues in mice. Conclusion: These results demonstrate that TA selectively inhibits malignant cell growth acting on specific targets and its chronic treatment did not cause apparent toxicity in nude mice
    corecore