6 research outputs found

    Cardiac progenitor cell therapy: mechanisms of action

    No full text
    Abstract Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic

    Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer

    No full text
    Bloom Syndrome is a rare recessive disease which includes a susceptibility to various cancers. It is caused by homozygous mutations of the BLM gene. To investigate whether heterozygous carriers of a BLM mutation are predisposed to breast cancer, we sequenced BLM in 617 patients from Polish families with a strong family history of breast cancer. We detected a founder mutation (c.1642C>T, p.Gln548Ter) in 3 of the 617 breast cancer patients (0.49%) who were sequenced. Then, we genotyped 14,804 unselected breast cancer cases and 4698 cancer-free women for the founder mutation. It was identified in 82 of 14,804 (0.55%) unselected cases and in 26 of 4698 (0.55%) controls (OR = 1.0; 95%CI 0.6–1.6). Clinical characteristics of breast cancers in the BLM mutation carriers and non-carriers were similar. Loss of the wild-type BLM allele was not detected in cancers from the BLM mutation carriers. No cancer type was more common in the relatives of mutation carriers compared to relatives of non-carriers. The BLM founder mutation p.Gln548Ter, which in a homozygous state is a cause of Bloom syndrome, does not appear to predispose to breast cancer in a heterozygous state. The finding casts doubt on the designation of BLM as an autosomal dominant breast cancer susceptibility gene

    Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer?

    No full text
    The current cancer testing gene panels tend to be comprehensive rather than site-specific. BARD1 is one of the genes commonly included in the multi-cancer testing panels. Mutations in BARD1 confer an increase in the risk for breast cancer, but it is not studied whether or not they predispose to prostate cancer. To establish if BARD1 mutations also predispose to prostate cancer, we screened BARD1 in 390 Polish patients with hereditary prostate cancer. No truncating mutations were identified by sequencing. We also genotyped 5715 men with unselected prostate cancer, and 10,252 controls for three recurrent BARD1 variants, including p.Q564X, p.R658C and p.R659=. Neither variant conferred elevated risk of prostate cancer (ORs between 0.84 and 1.15, p-values between 0.57 and 0.93) nor did they influence prostate cancer characteristics or survival. We conclude that men with a BARD1 mutation are not at elevated prostate cancer risk. It is not justified to inform men about increased prostate cancer risk in case of identification of a BARD1 mutation. However, a female relative of a man with a BARD1 mutation may benefit from this information and be tested for the mutation, because BARD1 is a breast cancer susceptibility gene

    Genetic contribution to all cancers: the first demonstration using the model of breast cancers from Poland stratified by age at diagnosis and tumour pathology

    No full text
    The aim of the study is to verify the hypothesis that genetic polymorphisms are associated with the predisposition to all malignancies. Using as a model breast cancers from the homogenous Polish population (West Pomeranian region) after stratification of 977 patients by age at diagnosis (under 51 years and above 50 years) and by tumour pathology (ductal cancers––low and high grade, lobular cancers, ER-positive/negative) we tested this hypothesis. Altogether 20 different groups of breast cancer cases have been analyzed. The results were compared to a group of unaffected controls that were matched by age, sex, ethnicity and geographical location and originated from families without cancers of any site among relatives. Molecular alterations selected for analyses included those which have been previously recognized as being associated with breast cancer predisposition. Statistically significant differences between the breast cancer cases and controls were observed in 19 of the 20 analyzed groups. Genetic changes were present in more than 90% of the breast cancer patients in 18 of 20 groups. The highest proportion of cases with constitutional changes—99.3% (139/140) was observed for lobular cancers. The number and type of genetic marker and/or the level of their association with the specific cancer predisposition was different between groups. Markers associated with majority of groups included: BRCA1, CHEK2, p53, TNRnTT, FGFRnAA, XPD CC/AA and XPD GG. Some markers appeared to be group specific and included polymorphisms in CDKN2A, CYP1B1, M3K nAA, and RS67
    corecore