5 research outputs found

    Evaluating the HYPE model for estimating groundwater recharge in a groundwater dominated catchment in Poland

    Get PDF
    Hydrological models can be useful tools simulating climate and land use changes and their impact on nutrients outflows from a catchment area. One of them is the HYPE (HYdrological Predictions for the Environment) water quality model applicable to different spatial scales. Groundwater recharge via infiltrating precipitation is a significant water budget component. The rate of groundwater recharge in the HYPE model is estimated from the water balance in soils. The Kocinka river catchment is one of the test areas in the BONUS-Soils2Sea project where HYPE model modelling was carried out. A hydrograph, among others, is one of the modelling results and, based on it, the recharge rate of groundwater was determined. This value was compared with groundwater recharge rates estimated by the infiltration method used for the Groundwater Vulnerability Map of Poland

    Modelling of long term low water level in mountain river catchments area

    Get PDF
    Changing atmospheric conditions, including above all the deepening extreme weather phenomena, are increasing from year to year. This, in consequence, causes an increase in the incidence of low outflows. The study compares low water levels for two catchments: Biała Woda and Czarna Woda, and phosphorus and nitrogen load using the Nutrient Delivery Ratio (NDR) model in InVEST software. The objective of the NDR is to map nutrient sources from catchment area and transfer to the river bed. The nutrient loads (nitrogen and phosphorus) spread across the landscape are determined based on a land use (LULC) map and associated loading rates described in literature. The studies have shown that low water levels have been more common recently and pose the greatest threat to the biological life in the aquatic ecosystems. The structure of land use is also of great importance, with a significant impact on the runoff and nitrogen and phosphorus load. Phosphorus and runoff from surface sources to the water of Biała Woda and Czarna Woda catchments area has been reduced in forested areas. Only higher run-offs are observed in the residential buildings zone. The nitrogen load was also greater in the lower (estuary) parts of both catchments, where residential buildings dominate.info:eu-repo/semantics/publishedVersio

    The benefits of synthetic or natural hydrogels application in agriculture : an overview article

    No full text
    In recent years, a growing problem of water deficit has been observed, which is particularly acute for agriculture. To alleviate the effects of drought, hydrogel soil additives – superabsorbent polymers (SAPs) – can be helpful. The primary objective of this article was to present a comparison of the advantages resulting from the application of synthetic or natural hydrogels in agriculture. The analysis of the subject was carried out based on 129 articles published between 1992 and 2020. In the article, the advantages of the application of hydrogel products in order to improve soil quality, and crop growth. Both kinds of soil amendments (synthetic and natural) similarly improve the yield of crops. In the case of natural origin polymers, a lower cost of preparation and a shorter time of biodegradation are indicated as the main advantage in comparison to synthetic polymers, and greater security for the environment

    Preparation, Characterization of Granulated Sulfur Fertilizers and Their Effects on a Sandy Soils

    No full text
    There is a potential for using sulfur waste in agriculture. The main objective of this study was to design a granular fertilizer based on waste elemental sulfur. Humic acids and halloysite were used to improve the properties and their influence on soil properties. This is the first report on the use of proposed materials for fertilizer production. The following granular fertilizers were prepared (the percentage share of component weight is given in brackets): fertilizer A (waste sulfur (95%) + halloysite (5%)), fertilizer B (waste sulfur (81%) + halloysite (5%) + humic acids (14%)), fertilizer C (waste sulfur (50%) + halloysite (50%)) and fertilizer D (waste sulfur (46%) + halloysite (46%) + humic acids (8%)). Basic properties of the obtained granulates were determined. Furthermore, the effect of the addition of the prepared fertilizers on soil pH, electrolytic conductivity, and sulfate content was examined in a 90-day incubation experiment. Enrichment with humic acids and the higher amount of halloysite increased the fertilizer properties (especially the share of larger granules and bulk density). In addition, it stabilized soil pH and increased the sulfur content (extracted with 0.01 mol·L−1 CaCl2 and Mehlich 3) in the soil

    Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials

    No full text
    Crop fertilization with sulfur is an important part of agricultural practices, as is the systematic increase in soil organic matter content. Materials of waste origin constitute a source of plant-available sulfur, as well as soil organic matter. The study was to verify the hypothesis assuming that combining waste sulfur pulp and its mixtures with organic materials enables simultaneous soil enrichment with readily available sulfur and organic matter. A 240-day incubation experiment was conducted, on two soils: very light and heavy; with two sulfur doses applied to each soil (20 and 40 mg S/kg d.m. for very light soil, and 30 and 60 mg S/kg d.m. for heavy soil). The sulfate sulfur content in the incubated soil material, treated with the addition of sulfur pulp and its mixtures with organic materials, increased significantly up to day 60 and then decreased. The application of these materials significantly increased the content of available sulfur and decreased the pH value of the incubated material. The effect of the introduced materials on dehydrogenase activity depended on soil granulometric composition (the impact of the applied materials on the activity of these enzymes in very light soil was small, and in heavy soil, their activity was usually limited by the presence of introduced materials). Application of the studied materials had little effect on the total organic carbon content in the incubated soil material (a significant change in the value of this parameter, in relation to the control soil, was recorded in some treatments of heavy soil)
    corecore