1 research outputs found

    Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core–Shell Nanosensors

    No full text
    A powerful online analysis setup for the simultaneous detection of oxygen and pH is presented. It features core–shell nanosensors, which enable contactless and inexpensive read-out using adapted oxygen meters via modified dual lifetime referencing in the frequency domain (phase shift measurements). Lipophilic indicator dyes were incorporated into core–shell structured poly­(styrene-<i>block</i>-vinylpyrrolidone) nanoparticles (average diameter = 180 nm) yielding oxygen nanosensors and pH nanosensors by applying different preparation protocols. The oxygen indicator platinum­(II) meso-tetra­(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF) was entrapped into the polystyrene core (oxygen nanosensors) and a pH sensitive BF<sub>2</sub>-chelated tetraarylazadipyrromethene dye (aza-BODIPY) was incorporated into the polyvinylpyrrolidone shell (pH nanosensors). The brightness of the pH nanoparticles was increased by more than 3 times using a light harvesting system. The nanosensors have several advantages such as being excitable with red light, emitting in the near-infrared spectral region, showing a high stability in aqueous media even at high particle concentrations, high ionic strength, or high protein concentrations and are spectrally compatible with the used read-out device. The resolution for oxygen of the setup is 0.5–2.0 hPa (approximately 0.02–0.08 mg/L of dissolved oxygen) at low oxygen concentrations (<50 hPa) and 4–8 hPa (approximately 0.16–0.32 mg/L of dissolved oxygen) at ambient air oxygen concentrations (approximately 200 hPa at 980 mbar air pressure) at room temperature. The pH resolution is 0.03–0.1 pH units within the dynamic range (apparent p<i>K</i><sub>a</sub> 7.23 ± 1.0) of the nanosensors. The sensors were used for online monitoring of pH changes during the enzymatic transformation of Penicillin G to 6-aminopenicillanic acid catalyzed by Penicillin G acylase in miniaturized stirred batch reactors or continuous flow microreactors
    corecore