282 research outputs found

    Hybrid Monte-Carlo simulation of interacting tight-binding model of graphene

    Full text link
    In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an investigation of the spontaneous breaking of the sublattice symmetry, which corresponds to a phase transition from a conducting to an insulating phase and which occurs when the effective fine-structure constant α\alpha of the system crosses above a certain threshold αC\alpha_C. Qualitative comparisons to earlier works on the subject (which used larger system sizes and higher statistics) are made and it is established that αC\alpha_C is of a plausible magnitude in our simulations. Also, we discuss differences between simulations using compact and non-compact variants of the Hubbard field and present a quantitative comparison of distinct discretization schemes of the Euclidean time-like dimension in the Fermion operator.Comment: 7 pages, 1 figure, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Spectrum of QCD at Finite Isospin Density

    Full text link
    We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.Comment: 8 pages, 7 figures, proceedings of Lattice2017, Granada, Spai

    Effective potential for SU(2) Polyakov loops and Wilson loop eigenvalues

    Full text link
    We simulate SU(2) gauge theory at temperatures ranging from slightly below TcT_c to roughly 2Tc2T_c for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases of the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model.Comment: 16 pages, 39 figure
    • …
    corecore