3,487 research outputs found

    Causal inference using the algorithmic Markov condition

    Full text link
    Inferring the causal structure that links n observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when only single observations are present. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also discuss how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.Comment: 16 figure

    Detecting confounding in multivariate linear models via spectral analysis

    Full text link
    We study a model where one target variable Y is correlated with a vector X:=(X_1,...,X_d) of predictor variables being potential causes of Y. We describe a method that infers to what extent the statistical dependences between X and Y are due to the influence of X on Y and to what extent due to a hidden common cause (confounder) of X and Y. The method relies on concentration of measure results for large dimensions d and an independence assumption stating that, in the absence of confounding, the vector of regression coefficients describing the influence of each X on Y typically has `generic orientation' relative to the eigenspaces of the covariance matrix of X. For the special case of a scalar confounder we show that confounding typically spoils this generic orientation in a characteristic way that can be used to quantitatively estimate the amount of confounding.Comment: 27 pages, 16 figure

    Indications for the onset of deconfinement in nucleus nucleus collisions

    Get PDF
    The hadronic final state of central Pb+Pb collisions at 20, 30, 40, 80, and 158 AGeV has been measured by the CERN NA49 collaboration. The mean transverse mass of pions and kaons at midrapidity stays nearly constant in this energy range, whereas at lower energies, at the AGS, a steep increase with beam energy was measured. Compared to p+p collisions as well as to model calculations, anomalies in the energy dependence of pion and kaon production at lower SPS energies are observed. These findings can be explained, assuming that the energy density reached in central A+A collisions at lower SPS energies is sufficient to force the hot and dense nuclear matter into a deconfined phase

    Causal Inference on Discrete Data using Additive Noise Models

    Full text link
    Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. We prove that whenever the joint distribution \prob^{(X,Y)} admits such a model in one direction, e.g. Y=f(X)+N, N \independent X, it does not admit the reversed model X=g(Y)+\tilde N, \tilde N \independent Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. In an extensive experimental study we show that this algorithm works both on synthetic and real data sets

    Distinguishing Cause and Effect via Second Order Exponential Models

    Full text link
    We propose a method to infer causal structures containing both discrete and continuous variables. The idea is to select causal hypotheses for which the conditional density of every variable, given its causes, becomes smooth. We define a family of smooth densities and conditional densities by second order exponential models, i.e., by maximizing conditional entropy subject to first and second statistical moments. If some of the variables take only values in proper subsets of R^n, these conditionals can induce different families of joint distributions even for Markov-equivalent graphs. We consider the case of one binary and one real-valued variable where the method can distinguish between cause and effect. Using this example, we describe that sometimes a causal hypothesis must be rejected because P(effect|cause) and P(cause) share algorithmic information (which is untypical if they are chosen independently). This way, our method is in the same spirit as faithfulness-based causal inference because it also rejects non-generic mutual adjustments among DAG-parameters.Comment: 36 pages, 8 figure

    Group invariance principles for causal generative models

    Full text link
    The postulate of independence of cause and mechanism (ICM) has recently led to several new causal discovery algorithms. The interpretation of independence and the way it is utilized, however, varies across these methods. Our aim in this paper is to propose a group theoretic framework for ICM to unify and generalize these approaches. In our setting, the cause-mechanism relationship is assessed by comparing it against a null hypothesis through the application of random generic group transformations. We show that the group theoretic view provides a very general tool to study the structure of data generating mechanisms with direct applications to machine learning.Comment: 16 pages, 6 figure

    Consistency of Causal Inference under the Additive Noise Model

    Full text link
    We analyze a family of methods for statistical causal inference from sample under the so-called Additive Noise Model. While most work on the subject has concentrated on establishing the soundness of the Additive Noise Model, the statistical consistency of the resulting inference methods has received little attention. We derive general conditions under which the given family of inference methods consistently infers the causal direction in a nonparametric setting
    corecore