35 research outputs found

    Gaussian quantum metrology and space-time probes

    Get PDF
    In this thesis we focus on Gaussian quantum metrology in the phase-space formalism and its applications in quantum sensing and the estimation of space-time parameters. We derive new formulae for the optimal estimation of multiple parameters encoded into Gaussian states. We discuss the discontinuous behavior of the figure of merit - the quantum Fisher information. Using derived expressions we devise a practical method of finding optimal probe states for the estimation of Gaussian channels and we illustrate this method on several examples. We show that the temperature of a probe state affects the estimation generically and always appears in the form of four multiplicative factors. We also discuss how well squeezed thermal states perform in the estimation of space-time parameters. Finally we study how the estimation precision changes when two parties exchanging a quantum state with the encoded parameter do not share a reference frame. We show that using a quantum reference frame could counter this effect.Comment: PhD Thesis, 173 pages, 15 figures, keywords: quantum metrology, Gaussian states, quantum field theory, quantum reference frame
    corecore