25 research outputs found

    Down-regulation of PLCγ2-β-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) favor tumor promotion, mainly by suppressing antitumor T cell responses in many cancers. Although the mechanism of T cell inhibition is established, the pathways leading to MDSC accumulation in bone marrow and secondary lymphoid organs of tumor-bearing hosts remain unclear. We demonstrate that down-regulation of PLCγ2 signaling in MDSCs is responsible for their aberrant expansion during tumor progression. PLCγ2(−/−) MDSCs show stronger immune-suppressive activity against CD8(+) T cells than WT MDSCs and potently promote tumor growth when adoptively transferred into WT mice. Mechanistically, PLCγ2(−/−) MDSCs display reduced β-catenin levels, and restoration of β-catenin expression decreases their expansion and tumor growth. Consistent with a negative role for β-catenin in MDSCs, its deletion in the myeloid population leads to MDSC accumulation and supports tumor progression, whereas expression of β-catenin constitutively active reduces MDSC numbers and protects from tumor growth. Further emphasizing the clinical relevance of these findings, MDSCs isolated from pancreatic cancer patients show reduced p-PLCγ2 and β-catenin levels compared with healthy controls, similar to tumor-bearing mice. Thus, for the first time, we demonstrate that down-regulation of PLCγ2–β-catenin pathway occurs in mice and humans and leads to MDSC-mediated tumor expansion, raising concerns about the efficacy of systemic β-catenin blockade as anti-cancer therapy

    Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer

    Get PDF
    Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users

    Social vulnerability is associated with more stomas after surgery for uncomplicated diverticulitis

    No full text
    Background: Previous research has demonstrated disparities in surgical management of diverticulitis based on various patient characteristics, including race. Recent investigation suggests environmental factors may also play a prominent role in patient outcomes. The Center for Disease Control and Prevention's Social Vulnerability Index (SVI) is emerging as a useful tool for studying this effect and may better characterize social determinants of health among colorectal pathology. Methods: This was a retrospective review of patients in the Healthcare Cost and Utilization Project Florida State Inpatient Database (2006–2014), matched by ZIP code to their corresponding SVI. Patients admitted through the emergency department with a primary diagnosis of diverticulitis were included. The rate of stoma creation amongst patients undergoing non-elective surgery for uncomplicated diverticulitis was compared by SVI. Results: Of the 4,212 patients in this study who underwent colectomy, 2,310 (54.8%) received a stoma. Compared to those with low vulnerability, highly vulnerable patients were more likely to receive a stoma (p = 0.014). In multivariable logistic analysis, increasing vulnerability was independently associated with increased odds of stoma creation (OR 1.08, p<0.001). Female sex (OR 0.86, p = 0.027), nonwhite race (OR 0.63, p<0.001), and minimally invasive surgical approach (OR 0.41, p<0.001) were associated with decreased odds of stoma creation. Conclusions: High social vulnerability was associated with stoma creation amongst patients who underwent non-elective surgery for uncomplicated diverticulitis. Contrarily, nonwhite race was associated with decreased rate of stoma creation, highlighting the importance of using more comprehensive metrics of patient vulnerability such as SVI, rather than race, in disparities research

    In silico epitope prediction analyses highlight the potential for distracting antigen immunodominance with allogeneic cancer vaccines

    Get PDF
    Allogeneic cancer vaccines are designed to induce antitumor immune responses with the goal of impacting tumor growth. Typical allogeneic cancer vaccines are produced by expansion of established cancer cell lines, transfection with vectors encoding immunostimulatory cytokines, and lethal irradiation. More than 100 clinical trials have investigated the clinical benefit of allogeneic cancer vaccines in various cancer types. Results show limited therapeutic benefit in clinical trials and currently there are no FDA approved allogeneic cancer vaccines. We used recently developed bioinformatics tools including the pVAC-seq suite of software tools to analyze DNA/RNA sequencing data from the TCGA to examine the repertoire of antigens presented by a typical allogeneic cancer vaccine, and to simulate allogeneic cancer vaccine clinical trials. Specifically, for each simulated clinical trial we modeled the repertoire of antigens presented by allogeneic cancer vaccines consisting of three hypothetical cancer cell lines to 30 patients with the same cancer type. Simulations were repeated ten times for each cancer type. Each tumor sample in the vaccine and the vaccine recipient was subjected to HLA typing, differential expression analyses for tumor associated antigens (TAAs), germline variant calling, and neoantigen prediction. These analyses provided a robust, quantitative comparison between potentially beneficial TAAs and neoantigens versus distracting antigens present in the allogeneic cancer vaccines. We observe that distracting antigens greatly outnumber shared TAAs and neoantigens, providing one potential explanation for the lack of observed responses to allogeneic cancer vaccines. This analysis provides additional rationale for the redirection of efforts towards a personalized cancer vaccine approach
    corecore