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updatesIn Silico Epitope Prediction Analyses

Highlight the Potential for Distracting
Antigen Immunodominance with Allogeneic
Cancer Vaccines
C. Alston James1, Peter Ronning2,3, Darren Cullinan1, Kelsy C. Cotto2, Erica K. Barnell2,3,
Katie M. Campbell2, Zachary L. Skidmore2, Dominic E. Sanford1,4, S. Peter Goedegebuure1,
William E. Gillanders1,4, Obi L. Griffith2,3,4,5, William G. Hawkins1,4, and Malachi Griffith2,3,4,5

ABSTRACT

Allogeneic cancer vaccines are designed to induce antitumor immune re-
sponses with the goal of impacting tumor growth. Typical allogeneic cancer
vaccines are produced by expansion of established cancer cell lines, trans-
fection with vectors encoding immunostimulatory cytokines, and lethal
irradiation. More than 100 clinical trials have investigated the clinical ben-
efit of allogeneic cancer vaccines in various cancer types. Results show
limited therapeutic benefit in clinical trials and currently there are no
FDA-approved allogeneic cancer vaccines. We used recently developed
bioinformatics tools including the pVACseq suite of software tools to an-
alyze DNA/RNA-sequencing data from the The Cancer Genome Atlas to
examine the repertoire of antigens presented by a typical allogeneic cancer
vaccine, and to simulate allogeneic cancer vaccine clinical trials. Specifi-
cally, for each simulated clinical trial, wemodeled the repertoire of antigens
presented by allogeneic cancer vaccines consisting of three hypothetical
cancer cell lines to 30 patients with the same cancer type. Simulations were
repeated ten times for each cancer type. Each tumor sample in the vac-

cine and the vaccine recipient was subjected to human leukocyte antigen
(HLA) typing, differential expression analyses for tumor-associated anti-
gens (TAA), germline variant calling, and neoantigen prediction. These
analyses provided a robust, quantitative comparison between potentially
beneficial TAAs and neoantigens versus distracting antigens present in the
allogeneic cancer vaccines.Weobserve that distracting antigens greatly out-
number sharedTAAs and neoantigens, providing one potential explanation
for the lack of observed responses to allogeneic cancer vaccines. This anal-
ysis provides additional rationale for the redirection of efforts toward a
personalized cancer vaccine approach.

Significance: A comprehensive examination of allogeneic cancer vaccine
antigen repertoire using large-scale genomics datasets highlights the large
number of distracting antigens and argues for more personalized ap-
proaches to immunotherapy that leverage recent strategies in tumor antigen
identification.

Introduction
Cancer vaccines were one of the first immunotherapies to be tested in hu-
mans (1) but progress has been limited. By augmenting a patient’s immune
response to antigens expressed (or overexpressed) by malignant cells, cancer
vaccines are designed to provide systemic antitumor immunity while limiting
the off-site toxicities associated with chemotherapy, radiotherapy, and non-
specific immunotherapies such as immune checkpoint inhibition (ICI). Initial
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cancer vaccines predominantly targeted proteins expressed at higher levels
in tumors compared with normal tissue, so-called tumor-associated antigens
(TAA), such as gp100 in melanoma or mesothelin in pancreatic cancer (2, 3).
Early iterations were often peptide-based, targeting one or more previously
defined TAA (4). While capable of generating an antigen-specific response
(5, 6), overall clinical response rates to these vaccines were very low (7) and
immune responses did not reliably correlate with improved outcome (6, 8).
One hypothesis for their failure is that the immune response to an antigen is

4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
obigriffith@wustl.edu; and William G. Hawkins, McDonnell Genome Institute,
4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
hawkinsw@wustl.edu

doi: 10.1158/2767-9764.CRC-21-0029

This open access article is distributed under the Creative Commons Attribution
License 4.0 International (CC BY).

© 2021 The Authors; Published by the American Association for Cancer Research

AACRJournals.org Cancer Res Commun; 1(2) November 2021 115

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/1/2/115/3149335/crc-21-0029.pdf by W

ashington U
niversity St Louis user on 06 June 2022

mailto:mgriffit@wustl.edu
mailto:obigriffith@wustl.edu
mailto:hawkinsw@wustl.edu


James et al.

TABLE 1 Summary of phase III clinical trials involving allogeneic cancer vaccines.

Cancer type
Number of trials
(year began)

Enrollment
(n)

Outcome
measured Result Vaccine (cell lines) Added agents

Melanoma 7 (1987, 1992, 1996, 1997,
1998

a
, 1998

a
, 2009

b
)

1417 DFI, Median
OS, 5yr DFS

NS Vaccinia melanoma Oncolysate,
Canvaxin (M101, M24, M10),
Melacine, CSF470

Vaccinia virus, BCG,
IFN-a2b, rhGM-CSF

NSCLC 2 (2008, 2013
a
) 667 OS NS Belagenpumatucel-L

(SK-LU1/HBA2, H520/HBA2,
RH2/HBA2, H460/HBAA/2)

Tergenpumatucel-L

TGF-B2 antisense
modified, murine
alpha-1, 3-gal modified

Cell line
Prostate

adenocarcinoma
2 (2004

a
, 2005

a
) 626 OS NS GVAX (PC3, LNCaP) GM-CSF

Pancreatic
adenocarcinoma

2 (2010, 2013
a
) 1024 OS NS Algenpantucel-L Murine alpha-1,3-gal

modified cell line

Abbreviations: DFI, disease-free interval; DFS, disease-free survival; NS, “not significant” difference between groups; OS, overall survival.
aIndicates trial terminated early.
bIndicates trial without published data.

influenced by the context in which it is presented. To generate amore robust re-
sponse, investigators developed allogeneic cancer vaccines, human cancer cell
lines in whole-cell or cell lysate form (Supplementary Fig. S1A and S1B). Al-
logeneic cancer vaccines carried the added potential to target antigens not yet
identified.

Allogeneic cancer vaccines were first used in advanced melanoma (1) and
have since been tested in lung (9), sarcoma (10), neuroblastoma (11), prostate
(12), renal cell (13), breast (14), colon (15), and pancreatic cancer (16). Allo-
geneic cancer vaccines provided a safe platform for the simultaneous delivery
of multiple known and unknown TAAs, and enthusiasm for this approach
translated into more than 100 phase I/II clinical trials between 1988 and 2020
(Supplementary Table S1). However, only a fraction of these progressed to
a phase III trial (Table 1), and none demonstrated a survival benefit. Nev-
ertheless, allogeneic cancer vaccines continue to be explored with ten new
phase I/II trials initiated since 2016 (Supplementary Table S1), including one
in 2020.

While several theories have been proposed to explain the lack of success of al-
logeneic cancer vaccines (17, 18), we hypothesized that at least one important
contributor to their lack of efficacy is the relative paucity of beneficial antigens
provided by these vaccines compared with the number of distracting anti-
gens. Beneficial tumor antigens exist in three broad categories: overexpressed
self-antigens in the form of TAAs, antigens resulting from somatic mutations
present in the cancer (i.e., neoantigens), and viral antigens in the case of viral-
induced tumors (e.g., HPV). For the purposes of the cancer types explored
here, we focus our analysis on TAAs and neoantigens. The recently developed
pVACtools software suite (19) provided the computational framework to rigor-
ously explore the antigenic repertoire supplied by allogeneic cancer vaccines.
Herein, we utilize the TCGA database to simulate allogeneic cancer vaccine
clinical trials in an effort to quantify the ratio of beneficial antigens to distract-
ing antigens within cancer types. The extent to which beneficial antigens are
outnumbered by off-target antigens present in allogeneic vaccines has not been
previously explored, and our analysis illustrates a potential shortcoming of this
approach.

Materials and Methods
Simulation of Allogeneic Tumor Cell Vaccine
Clinical Trials
A series of hypothetical clinical trials were simulated using samples from The
Cancer Genome Atlas (TCGA; ref. 20) to represent both the somatic and
germline variant landscape of individual patients and the complexity of al-
logeneic cancer vaccines created from multiple tumor cell sources. For each
clinical trial simulation, 33 tumor samples were randomly selected, whereby
three samples were designated as the allogeneic cancer vaccine cocktail and the
remaining 30 samples were designated as hypothetical patients to assess overlap
of antigens presented by the vaccine with the repertoire of antigens presented
by the tumor (Fig. 1). This simulation was repeated 10 times each for 30 differ-
ent tumor subtypes. For each tumor type, for each simulation, tumor sampling
was performed without replacement using the full set of individuals available
for that tumor type. Overlap of tumor identity between iterations was possi-
ble. The assignment of tumors to the vaccine cocktail or patient group was also
random.

HLA Typing
Human leukocyte antigen (HLA)-I/II haplotypes were obtained for TCGA
samples from the Cancer Immune Atlas (TCIA) via a controlled access data
use agreement for the TCGA managed by dbGaP (21). The TCIA did not have
HLA types for all TCGA cases with somatic variants available in the Genomic
Data Commons (GDC). If samples had previously performedHLA typing from
the TCIA, these calls were repurposed for this analysis. If samples did not have
previously performed HLA typing, OptiType (22) was used to predict HLA
types. Briefly, for these samples, raw whole-exome data was downloaded from
the GDC and used as input for OptiType.

TAA Analysis
TAA analysis was limited to established TAA genes deemed relevant to each
cancer type studied. Gene names and reference transcripts for these tar-
gets were as follows: gp100 (also known as PMEL; ENST00000548747.5),
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Tumor-specific somatic variants

Somatic variants encoding amino acid changes

Variant peptide produces

neoantigen with IC
50

 < 500

Strong-binding neoantigen presented by 

HLA allele found on both vaccine and patient

FIGURE 1 Simulated clinical trial work flow and shared neoantigen analysis. Using cancer-type matched cohorts from the TCGA, 33 samples were
selected randomly and designated as either “vaccine” (n = 3) or “patient” (n = 30). Analysis was then performed to determine the number of shared
tumor-specific neoantigens between the pooled vaccine and each patient individually. Right, a neoantigen analysis workflow is depicted.
Tumor-specific neoantigens were determined for each sample individually in the following order. All somatic variants in the tumor were first identified.
Non–protein-altering variants were excluded. The total pool of possible peptides was then calculated, and those that did not result in a predicted
neoantigen with an IC50 < 500 nm were excluded for the lysate-based analysis. In addition, predicted neoantigens not presented on both the vaccine
and patient’s MHC haplotype were excluded for the cell-based analysis (Materials and Methods).

CEA (ENST00000598976.1), HER2 (also known as ERBB2; ENST0000
0269571.10), Ny-ESO-1 (CTAG1B; ENST00000328435.2), MUC1 (ENST00000
338684.9),Mesothelin (also known asMSLN; ENST00000545450.7), PSA (also
known as KLK3; ENST00000326003.2), PAP (also known as ACP3; ENST000
00336375.10), MART-1 (also known as MLANA; ENST00000381477.8), and
VEGFR1 (also known as FLT1; ENST00000282397.9). Protein sequences for
these reference transcripts were obtained using Ensembl BioMART (23).
Candidate TAA peptides encoded by each full-length protein sequence were
identified using the pVACbind module of pVACtools. Every possible 9 amino
acid peptide from these full-length protein sequences was analyzed for bind-
ing against every HLA class I allele observed across all patient and vaccine
samples examined. Candidate TAA peptides were defined as those having a
predicted peptide HLA I binding affinity < 500 nm (median of multiple bind-
ing prediction algorithms as described above for the neoantigen analysis) for
the patient. If multiple adjacent 9-mer peptides extracted from the full-length
sequence were considered strong HLA binders and their overlapping peptide
sequence was> 44% (4 of 9 amino acids), only one of these overlapping candi-
dates was counted. For the purpose of this analysis, all genes were assumed to
be robustly expressed in the vaccine samples (as would likely be the case in the
sample chosen for a real allogeneic vaccine). In each hypothetical patient sam-
ple (TCGA cases), expression data were obtained from the GDC and a TAA
gene was considered expressed if it was expressed above the 50th percentile
of all nonzero (FPKM) genes within that tumor. Each peptide candidate was
only counted if the TAA gene was expressed by the patient. Analysis was per-
formed to reflect two alternate vaccine models: a “lysate-based” vaccine model
and a “cell-based” vaccine model. Shared TAAs in the “lysate-based” analysis
represent strong binding (IC50 < 500 nm) TAAs expressed in the patient, as
described above, with no additional requirements. Under the “cell-based” anal-
ysis, a TAA peptide had to be a strong binding candidate for at least one HLA
allele shared by the cells of the patient and the cells of the vaccine samples. This
analysis takes into account the scenario where intact allogeneic cancer cells are

used in vaccination and are responsible for presenting antigens directly to the
patient’s immune system. As a result, shared TAAs identified in the cell-based
analysis represent a subset of those identified by lysate analysis (requiring shar-
ing of both peptides and HLA haplotypes between vaccine and patient). While
the predominant mechanism is likely cross-presentation of antigens in apop-
totic bodies from the lysed cell (i.e., lysate-based analysis; ref. 24), we include
cell-based analysis for the sake of completeness.

Somatic Variant Calling/Filtering/Annotation
For analysis of the neoantigen repertoire, we first identified somatic variants
present in individual cancers. Somatic variants for TCGA samples were ob-
tained from the Genomic Data Commons (GDC) Portal using the GDC Data
Transfer Tool (25). Somatic variant files used were those generated with the
GDC Mutect2 workflow (26). VCF files were decompressed with gunzip and
recompressed and indexed with bgzip and Tabix (27). All variants marked as
failing any filter of the GDC Mutect2 workflow were removed using vcftools
with options “–recode” and “–remove-filtered-all” (28). Variants called by Mu-
Tect2 were further filtered to require tumor DNA variant allele fraction >5%
and tumor depth>5 reads. Somatic variants were annotated for their transcrip-
tional consequence using the Ensembl Variant Effect Predictor (VEP) version
93.2 using default parameters with the following modifications to facilitate
neoantigen analysis in the following sections: “–plugin Downstream –plugin
Wildtype –symbol –tsl” (29). A tabular variant report was generated from each
VCF file using the GATK module VariantsToTable to extract basic variant in-
formation: CHROM, POS, REF, and ALT (30). The variant report was then
supplemented with transcript effect information using the VAtools “VEP An-
notation Reporter” module (http://vatools.org/) to extract the following fields:
Feature, Consequence, SYMBOL, Protein_position, and Amino_acids. The an-
notatedVCFfilewas used for neoantigen identification using pVACtools (19, 31)
as described below and the tabular report was used to compare somatic variants
between simulated allogeneic vaccines and patients.
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Neoantigen Prediction
Using HLA typing results and filtered variants obtained above, neoantigen pre-
dictionwas performed using the pVACseq package of pVACtools (v.4.1) (19, 31).
Briefly, ten different epitope/HLA binding affinity algorithms were employed
to compile a list of putative neoantigens that have a varying level of predicted
efficacy: NNalign, NetMHC, MHCFlurry, NetMHCcons, NetMHCpan, Pick-
Pocket, SMM, SMMPMBEC, MHCnuggets, and SMMalign. Parameters for
pVACseq included limiting predictions for frameshift mutations to less than
500 amino acids downstream of the variant. Neoantigens selected for further
analysis were required to have< 500 nmpredicted binding affinity to be consid-
ered a candidate neoantigen (using themedian binding affinity of all algorithms
that could be applied to each particular peptide:HLA pair; Fig. 1). When a
single somatic variant results in multiple peptide registers (e.g., same mutant
amino acid at different positions in a 9-mer) or multiple peptide lengths that
are predicted to be strong binders to HLA, these were not double counted. In
other words, each neoantigen count refers to at least one strong binding peptide
arising from a somatic mutation.

Comparison of Vaccine Neoantigen Predictions Against
Simulated Patient Predictions
Somatic variants for each of the three samples used in the simulated vaccine
were merged into a single list (Fig. 1). Overlap of somatic variants between the
simulated vaccine and individual patients required a direct match with regard
to the altered amino acid sequence. Analysis was performed to reflect two alter-
nate vaccine models: a “lysate-based” vaccine model and a “cell-based” vaccine
model as described above for the case of shared TAAs. Briefly, a neoantigen was
considered to be shared in the “lysate-based” analysis if an overlapping somatic
variant produced a strong binding (IC50 < 500 nm) neoantigen in an individ-
ual patient. Under the “cell-based” analysis, a neoantigen was considered to be
shared if an overlapping somatic variant produced a strong binding (IC50 <

500 nm) neoantigen in both the vaccine and an individual patient.

Germline Polymorphism Calling/Filtering/Annotation
Germline variants were called using GATK’s HaplotypeCaller using the default
parameters (30). Single-nucleotide polymorphisms (SNP) were further filtered
usingGATK’sVariantFiltration andfiltering parameters ofQD< 2.0, FS> 60.0,
MQ< 40.0, and SOR> 3.0. Small insertions and deletions (indels) were further
filtered using GATK’s VariantFiltration and filtering parameters of QD < 2.0,
FS > 200.0, MQ < 40.0, and SOR > 5.0.

Germline Alloantigen Analysis
Estimation of potential off-target alloantigens present in allogeneic vaccines re-
lied on germline variant analyses described in the previous methods section. In
each patient sample, the genotype of all SNPs and small insertions and deletions
was considered and compared with the genotype of such polymorphisms in the
sample of each hypothetical allogeneic vaccine. Potential alloantigen produc-
ing germline polymorphisms were those present in at least one sample of the
allogeneic vaccine but absent from (and therefore potentially foreign to) the
patient sample. This evaluation was performed for every patient in each of 10
simulated trials for five cancer types (total of 30 patients × 5 cancer types ×
10 random trial iterations = 1,500 patients). Each of these comparisons yielded
thousands of potential variants to test for HLA I binding. The altered amino
acid sequence arising from each potentially foreign variant needed to be tested
against all HLA alleles of the either the corresponding patient (lysate-based
model) or both the patient and vaccine (cell-based model) samples. Because

the foreign variants represented common polymorphisms, some combinations
of candidate variant and HLA alleles were observed in multiple patients and
clinical trial simulations. For computational efficiency, a database of germline
variant HLA pairs to be tested was created. Each pair was subjected to antigen
analysis using the pVACseq module of pVACtools using the same ten binding
prediction algorithms as described above for the neoantigen analysis. In con-
trast to the neoantigen analysis where such calculations were only performed
for the relatively rare instances of somatic variants being shared between vac-
cines and patients, this analysis of foreign germline variants involved orders
of magnitude more binding predictions. Antigen binding predictions were
required for 6,559,512 variant–HLA pairs. Analysis with pVACseq required
approximately 10 days of computation on a high-performance compute clus-
ter using 500 nodes with 4 CPUs each. Antigen candidates were identified
from these results essentially as described for the neoantigen and TAA anal-
yses as described above. Summarization of alloantigen peptide counts for
each patient was again considered under the “lysate-based” and “cell-based”
vaccine assumptions as described above. Under the lysate-based assumption,
to be counted, a peptide had to be a strong HLA-binding candidate for at
least one HLA allele of the patient’s HLA type (i.e., presentable by the pa-
tient’s cells). Under the “cell-based” assumption, a peptide had only to be a
strong binding candidate for at least one HLA allele of the cells of the vaccine
samples.

Data Availability
Exome data from cases representing each cancer type were obtained from
TCGA (20) and downloaded via the Genomic Data Commons (32). This data
can be accessed under dbGaP study accession phs000178.

Results
TAAs are Modestly Expressed Throughout Cancer Types
Expression of commonly identified TAAs across patients within a cancer type
was assessed as a surrogate for the potential antitumor effect provided by these
vaccines. Established TAAs were selected for each of the five cancer types
commonly seen in allogeneic vaccine clinical trials: Gp100, Ny-ESO-1, and
MART-1 for melanoma (SKCM); VEGFR1 and Ny-ESO-1 for lung adenocarci-
noma (LUAD); VEGFR1 and Ny-ESO-1 for lung squamous carcinoma (LUSC);
PSA and PAP for prostate adenocarcinoma (PRAD); and MUC1 and Mesothe-
lin for pancreatic adenocarcinoma (PAAD). For each cancer type, clinical trials
were simulated (see Materials andMethods). After considering HLA alleles for
patient and vaccine, each patient was evaluated for presentation of the TAA
peptide and robustness of their TAA expression using RNA data (Methods). A
single clinical trial iteration in PAAD is shown for illustration, presenting both
“lysate-based” and “cell-based” analysis (Fig. 2A). Here, lysate-based analysis
represents TAAs expressed in the patient and predicted to be strong binders to
at least one of the patient’s HLA alleles,whereas cell-based analysis represents
TAAs expressed by the patient and predicted to be strong binders to at least one
HLA allele shared by the patient and vaccine. By lysate-based analysis, 83.3%
of patients expressed between 25 and 50 TAAs (MUC1, mesothelin), whereas
16.7% exhibited between 50 and 60. This process was repeated for a total of 10
clinical trial simulations, to simulate the treatment of 300 patients across five
different cancer types (Fig. 2B). LUAD and LUSC had the most robust expres-
sion of TAAs (VEGFR1 and Ny-ESO-1) among the five cancer types examined.
Patients shared between 25 and 155 TAAs with the vaccine by lysate-based anal-
ysis, with approximately 30% of patients exhibiting greater than 100 shared
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(Continued) vaccine (cell-based analysis), requiring evidence for both presentation of TAA peptide and robust expression of the TAA gene (Methods).
B, TAA expression in each of five cancer types. For each cancer type, select established TAA genes were considered (Gp100, Ny-ESO-1 and MART-1 for
SKCM; VEGFR1 and Ny-ESO-1 for LUAD; VEGFR1 and Ny-ESO-1 for LUSC; PSA and PAP for PRAD). Counts of expressed TAAs across 300 patients for
each tumor type are shown as violin plots with individual points representing the count for each simulated patient overlaid.

antigens. However, PAAD, PRAD (PSA, PAP), and SKCM (Gp100, Ny-ESO-1,
andMART-1) exhibited significantly fewer TAAs across their respective patient
populations. Patients ranged between 25 and 75 shared antigens by lysate-based
analysis, with 7%of SKCMpatients and 3.6%of PRADpatients expressingmore
than than 50 TAAs. TAA expression was consistent throughout patients within
a cancer type; however, the level of expression varied widely by cancer type.

Allogeneic Cancer Vaccines Share Exceptionally Few
Shared Neoantigens with Individual Patients
While the immunologic benefits from allogeneic vaccines were believed to stem
predominantly from high expression of TAAs, somatic mutations (i.e., neoanti-
gens) shared between the patient and vaccine may represent an additional
source of beneficial antigens provided by this approach. At their inception, the
frequency of shared neoantigens found in allogeneic vaccines was not expected
to be sufficiently high to be immunologically relevant (33), although this mat-
ter has not been explored in the literature. Therefore, all simulated clinical trials
were assessed to determine the frequency of shared neoantigens among treated
patients. A single clinical trial iteration in melanoma (SKCM) is shown for il-
lustration (Fig. 3A). As outlined above, a pooled vaccine was compared with
30 individual patients – shared protein altering variants (PAV) and neoanti-
gens from lysate-based or cell-based analysis are shown. The pooled vaccine
represented a total of 455 unique PAVs and 254 filtered neoantigens. Individ-
ual patients averaged 177 PAVs and 143 filtered neoantigens. 17 (56.6%) patients
had at least a single overlapping PAVswith the vaccine. By lysate-based analysis,
seven (23.3%) patients shared a single neoantigen with the vaccine, while cell-
based analysis showed that only two patients (6.6%) shared a single neoantigen
with the vaccine. This process was repeated for a total of 10 clinical trial it-
erations, simulating 300 patients treated with 10 distinct simulated vaccines.
Lysate-based analysis (Fig. 3B) and cell-based analysis (Fig. 3C) for 10 iter-
ations of SKCM are shown. As explained above, cell-based overlaps are, by
definition, a subset of shared neoantigens identified in lysate-based analysis.
In total, 73 (24.3%) patients shared at least one neoantigen with the vaccine
by lysate-based analysis. One patient had three shared neoantigens, three pa-
tients had two shared neoantigens, and 69 patients had a single overlapping
neoantigen. Of the 73 patients with a shared neoantigen, 64 (87.7%) were re-
lated to a BRAF mutation. By the more restrictive cell-based analysis, only 18
(6%) patients shared any neoantigen with the vaccine, 15 of which were BRAF
mutations.

10 such iterations of vaccine trials were performed in all 30 cancer types avail-
able on TCGA that yielded comparable results (Supplementary Figs. S2 and
S3). In addition to melanoma (SKCM), the four other cancer types most com-
monly associated with allogeneic vaccines (PRAD, PAAD, LUAD, LUSC) are
shown in Fig. 4A and B (lysate- and cell-based analysis, respectively). PAAD
had the second highest number of patients with any overlap with the vac-
cine behind SKCM. Forty-four (14.6%) patients had a single shared neoantigen
by lysate-based analysis, 39 of which represented KRAS mutations (G12D or
G12V). By cell-based analysis, 8 patients had shared neoantigens, 6 of which
were KRAS related. LUAD had the third highest number of shared neoantigens

with 12 patients (4%), 8 of which representedKRASmutations (G12D or G12V).
In the cell-based analysis, 3 patients had overlapping neoantigens, 1 of which
was KRAS related. LUSC had very few patients with overlapping neoantigens,
6 patients (2%) with a single overlapping neoantigen by lysate-based and only
one patient by cell-based analyses. In 300 PRAD patients, none shared a single
neoantigen with the vaccine pool by lysate- or cell-based analysis.

Allogeneic Vaccines Represent a Major Source of
Off-Target Alloantigens
While TAA’s appear to be modestly expressed across most patients, these are
being presented alongside off-target “alloantigens”. These include either unique
antigens resulting from naturally occurring polymorphisms in a population,
or normal protein antigens being presented on novel donor HLA alleles (in
the case of a cell-based analysis assuming direct presentation). Because allo-
geneic HLA alleles and protein-altering germline polymorphisms are novel to
the patient, they carry the potential for nonspecific immunogenicity. Evidence
that these alloantigens are recognized by the immune system and are immuno-
genic can be found in solid organ transplantation, where increased frequency
of alloantigens are believed to be responsible for higher rates of graft rejection
(34) and part of the original rationale for allogeneic cancer vaccines. A single
iteration of the SKCM simulated trial is shown (Fig. 5A). The vaccine consis-
tently presents between 7,000 and 8,000 alloantigens, approximately two orders
of magnitude larger than the beneficial antigens quantified above. Of these,
between 2,000 and 4,000 were predicted to be strong binding antigens, with
IC50 < 500 nm. This finding was consistent across the five cancer types most
commonly seen in allogeneic vaccine trials, and for both lysate- and cell-based
analysis (Fig. 5B).

Discussion
The objective of this work was to investigate the antigen repertoire associated
with allogeneic cancer vaccines. Our work uses innovative bioinformatics tools
to provide a novel quantitative evaluation of the allogeneic vaccine antigen
repertoire, illustrating the extent to which beneficial TAAs and neoantigens are
vastly outnumbered by distracting alloantigens. These data suggest one poten-
tial limitation of the allogeneic cancer vaccine platform and rationale for the
lack of success seen in these approaches at the phase III level.

Here we confirm the hypothesis that very few shared neoantigens are present
in allogeneic vaccines. Inmelanoma, a cancer with a well-documented high so-
matic mutation prevalence (35), only 73 patients (24.3%) have any overlapping
neoantigens with a simulated allogeneic vaccine, and of these, the majority (69
of 73, 88%) have only a single neoantigen in common. In addition, the ma-
jority of shared neoantigens observed are BRAF mutations (64 of 78, 82%), a
known driver mutation for melanoma and previously documented in as many
as 66% of all malignant melanoma cases (36). Not only is the presence of shared
BRAF mutations in our analysis to be expected, but it is also a mutation for
which an FDA-approved targeted therapy already exists (37). Excluding these
patients for whom BRAF-directed therapy would be indicated, only 14 of the
300 (4.6%) patients will benefit from a vaccine-provided neoantigen. A similar
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FIGURE 3 Shared neoantigen analysis in melanoma. A, Single Iteration of a simulated clinical trial using TCGA’s melanoma (SKCM) cohort. The
count of each patient’s (n = 30) protein-altering somatic variants and predicted neoantigens are shown in the top left panel. Quantification of each
designated “vaccine” sample, both individually (n = 3) and as a pooled “Vaccine” are provided in the top right panel. Shared variants and predicted
neoantigens by cell-based and lysate-based analysis are shown in the bottom panel. B, Lysate-based neoantigen analysis of melanoma simulated
clinical trial. Ten clinical trials in melanoma were simulated analyzing a total of 300 patients. The total (Continued on the following page.)
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(Continued) number of shared neoantigens that each patient shared with the vaccine, by lysate-based analysis, is shown in the left. In patients who
had one or more shared neoantigens with the vaccine, the identity and frequency of each neoantigen is shown in the right. C, Cell-based neoantigen
analysis of melanoma simulated clinical trial. Ten clinical trials in melanoma were simulated analyzing a total of 300 patients. The total number of
shared neoantigens that each patient shared with the vaccine, by cell-based analysis, is shown in the left. In patients who had one or more shared
neoantigens with the vaccine, the identity and frequency of each neoantigen is shown in the right.

observation ismade in PAADandLUAD, forwhom the overwhelmingmajority
of sharedneoantigenswereKRASmutations – 90%and92%, respectively.KRAS
is a known driver mutation for PAAD but has proven elusive as a therapeutic
target (38). KRAS-targeted therapy has also been defined by failure in LUAD,
apart from a recent breakthrough in the form of Sotorasib (39, 40). When ex-
cluding these expected driver mutations described above, there are exceedingly
few patients (1.7% and 1.3% in PAAD and LUAD, respectively), who have even
a single overlapping neoantigen with the simulated vaccine. In cancers without
classical drivermutations, even fewer overlapping neoantigens were observed –
0% and 2% of patients with PRAD and LUSC, respectively, had any overlapwith
the vaccine. These data suggest that an immunologic benefit from allogeneic
vaccines would rely to amuch greater extent on TAA expression and not shared
neoantigens.

Indeed, we observed TAA expression consistently across five different tumor
types that could provide an immunologic benefit as a result. However, attempts
to vaccinate against TAAs have yielded minimal success since their inception
in the 1980s (41). This is likely due to multiple factors—TAAs, as self-antigens,
are potentially subject to central and acquired tolerance that would restrain the
resulting T-cell response (42). Another consequence of vaccinating against self-
antigens is the potential for an autoimmune response, although this is rare and
likely depends on the type of TAA used (43, 44).

Our analysis of allogeneic cancer vaccines addresses an additional concern—
the off-target alloantigens presented by this platform represent a significant
barrier to generating a tumor-specific immune response. When presented with
thousands of foreign peptides, CD8+ T-cell responses are frequently directed
toward a restricted group of or even a single antigen in a process known as im-
munodominance (45). While initially described in antiviral and antibacterial
immune responses, this phenomenon and its implications are increasingly ap-
preciated in vaccine administration (46, 47). Given that shared tumor antigens
are outnumbered by off-target antigens in allogeneic vaccines by two orders of
magnitude, it is unlikely that the predominant vaccine-induced response will
be beneficial. Taken together, these data demonstrate the infeasibility of allo-
geneic vaccines as a source of immunologically relevant, potentially beneficial
tumor antigens.

There aremultiple limitations to this study that should be addressed. Regarding
TAAs, our analysis was restricted to known TAAs, neglecting the possible con-
tribution of unknown TAAs. In addition, TAA analysis was performed for the
five commonest tumor types and did not evaluate the other 25 types included
in the TCGA database. Finally, by only considering TAA peptides whose re-
spective genes were expressed above the 50th percentile of all nonzero genes
expressed in the tumor, we may discount the influence of TAAs less robustly
expressed. The in silico nature of our analysis has several caveats. First, we
used primary tumor sequence data from the TCGA to simulate the compo-
sition of allogeneic vaccines that would typically be made from cell lines. In
addition, the samples chosen to simulate the allogeneic vaccine were randomly
selected without optimization of TAA, neoantigen, or HLA coverage, which, if

performed, would have the potential to increase the antigen repertoire of the
vaccine. Similarly, restricting treatment to patients with certain HLA haplo-
types would remove a potential barrier to immunogenicity and increase the
number of patients capable of responding to vaccine antigens.Ourmethods rely
heavily on the accuracy of neoantigen prediction software to provide the pool
of possible overlapping neoantigens. While these are known to have flaws and
differences exist between algorithms, the methods used here reflect those cur-
rently being used clinically (48–50). Despite the recent advances demonstrating
the importance of the CD4+ T-cell response to tumor-specific mutations in the
HLA-II context (51), we have not included HLA-II predictions in our models
as they are much less reliable and have not begun full implementation in hu-
man trials as of yet (51, 52). Finally, the failure of allogeneic vaccines is likely
multifactorial and not solely due to the paucity of beneficial antigens compared
with distracting antigens. There are alsomany documentedmechanisms of im-
munosuppression employed by cancer that likely play a role in the failure of
vaccines (53).

Here we examine a shortcoming inherent to the design of allogeneic cancer
vaccines. These data highlight the antigenic heterogeneity found within can-
cer types, the subsequent infeasibility of the allogeneic vaccine approach, and
provide further support for a personalized approach to cancer vaccines. By eval-
uating individual tumors as opposed to relying on generic similarities within
cancer types, personalized vaccines deliver neoantigens known to be expressed
in the patient’s tumor. Indeed, our analyses demonstrate the presence of nu-
merous cancer neoantigens that can be targeted for each patient, with some
melanoma patients exhibiting more than 200. The clinical relevance of these
neoantigens can be seen in adoptive T-cell therapy, where they are being used
to stimulate specific antitumor T cells, creating a more personalized adoptive
T-cell therapy (e.g., NCT03171220 and NCT03658785). Indeed, in melanoma,
neoantigen load was found to predict the clinical benefit of adoptive T-cell
therapy (54). Identifying targetable neoantigens also facilitates personalized
therapies in the form of chimeric antigen receptor T cells, capable of target-
ing neoantigens expressed solely on tumor cells (e.g., NCT02844062; ref. 55).
Efforts are even being made to engineer TCRs against personalized neoanti-
gens, treating patients with an infusion of these cells after expansion (e.g.,
NCT04102436). In addition, given the recent success of TAA vaccination in
the proper context (56), personalized cancer vaccination allows for a hybrid
approach, utilizing patient-specific neoantigens while also allowing for the in-
clusion of relevant TAAs. This approach has shown promise in phase I clinical
trials in melanoma and there are ongoing trials determining their efficacy in
a variety of cancers including pancreatic adenocarcinoma, breast cancer, and
glioblastoma (57–60).

In summary, our results demonstrate that beneficial antigens provided by allo-
geneic vaccines are significantly outnumbered by off-target antigens, providing
an immunologic hurdle to their clinical efficacy and potentially contributing to
their failure in phase III trials. Given the rapidly decreasing cost, and increasing
availability of next-generation sequencing, future efforts should be focused on
pursuing personalized approaches with regards to cancer vaccines.
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B

FIGURE 4 Shared neoantigen analysis in common allogeneic vaccine cancer types. A, Lysate-based overlap analysis. Counts of shared neoantigens
per patient for each cancer type based on a lysate-based vaccine administration are shown on the left. Counts summarize 10 complete trial simulations
(300 simulated patients total) for each cancer type. A heatmap of shared neoantigen identities from combined trials in each cancer type (300
simulated patients) is shown on the right. B, Cell-based overlap analysis. Counts of shared neoantigens per patient for each cancer type based on
cell-based vaccine administration are shown on the left. Counts summarize 10 complete trial simulations (300 simulated patients) for each cancer type
are shown on the left. A heatmap of shared neoantigen identities from combined trials in each cancer type (300 simulated patients) is shown on the
right.
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FIGURE 5 Genome-wide germline variant and alloantigen analysis. A, Alloantigen analysis in a single simulation of a melanoma clinical trial.
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