111 research outputs found

    Potential impacts of climate change on habitat suitability for the Queensland fruit fly

    Get PDF
    Anthropogenic climate change is a major factor driving shifts in the distributions of pests and invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most economically damaging insect pest of Australia's horticultural industry, and its management is a key priority for plant protection and biosecurity. Identifying the extent to which climate change may alter the distribution of suitable habitat for Qfly is important for the development and continuation of effective monitoring programs, phytosanitary measures, and management strategies. We used Maxent, a species distribution model, to map suitable habitat for Qfly under current climate, and six climate scenarios for 2030, 2050 and 2070. Our results highlight that south-western Australia, northern regions of the Northern Territory, eastern Queensland, and much of south-eastern Australia are currently suitable for Qfly. This includes southern Victoria and eastern Tasmania, which are currently free of breeding populations. There is substantial agreement across future climate scenarios that most areas currently suitable will remain so until at least 2070. Our projections provide an initial estimate of the potential exposure of Australia's horticultural industry to Qfly as climate changes, highlighting the need for long-term vigilance across southern Australia to prevent further range expansion of this species

    Impacts of climate change on high priority fruit fly species in Australia

    Get PDF
    Tephritid fruit flies are among the most destructive horticultural pests posing risks to Australia’s multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly species of economic concern in Australia. Of these, nine are native to this continent (Bactrocera aquilonis, B. bryoniae, B. halfordiae, B. jarvisi, B. kraussi, B. musae, B. neohumeralis, B. tryoni and Zeugodacus cucumis), while B. frauenfeldi and Ceratitis capitata are introduced. To varying degrees these species are costly to Australia’s horticulture through in-farm management, monitoring to demonstrate pest freedom, quarantine and trade restrictions, and crop losses. Here, we used a common species distribution model, Maxent, to assess climate suitability for these 11 species under baseline (1960–1990) and future climate scenarios for Australia. Projections indicate that the Wet Tropics is likely to be vulnerable to all 11 species until at least 2070, with the east coast of Australia also likely to remain vulnerable to multiple species. While the Cape York Peninsula and Northern Territory are projected to have suitable climate for numerous species, extrapolation to novel climates in these areas decreases confidence in model projections. The climate suitability of major horticulture areas currently in eastern Queensland, southern-central New South Wales and southern Victoria to these pests may increase as climate changes. By highlighting areas at risk of pest range expansion in the future our study may guide Australia’s horticulture industry in developing effective monitoring and management strategies

    Making the Anscombe-Aumann approach to ambiguity suitable for descriptive applications

    Get PDF
    The Anscombe-Aumann (AA) model, originally introduced to give a normative basis to expected utility, is nowadays mostly used for another purpose: to analyze deviations from expected utility due to ambiguity (unknown probabilities). The AA model makes two ancillary assumptions that do not refer to ambiguity: expected utility for risk and backward induction. These assumptions, even if normatively appropriate, fail descriptively. This paper relaxes these ancillary assumptions to avoid the descriptive violations, while maintaining AA\xe2\x80\x99s convenient mixture operation. Thus, it becomes possible to test and apply all AA-based ambiguity theories descriptively while avoiding confounds due to violated ancillary assumptions. The resulting tests use only simple stimuli, avoiding noise due to complexity. We demonstrate the latter in a simple experiment where we find that three assumptions about ambiguity, commonly made in AA theories, are violated: reference independence, universal ambiguity aversion, and weak certainty independence. The second, theoretical, part of the paper accommodates the violations found for the first ambiguity theory in the AA model\xe2\x80\x94Schmeidler\xe2\x80\x99s CEU theory\xe2\x80\x94by introducing and axiomatizing a reference dependent generalization. That is, we extend the AA ambiguity model to prospect theory

    Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review

    Full text link
    corecore