456 research outputs found
The Chaotic Regime of D-Term Inflation
We consider D-term inflation for small couplings of the inflaton to matter
fields. Standard hybrid inflation then ends at a critical value of the inflaton
field that exceeds the Planck mass. During the subsequent waterfall transition
the inflaton continues its slow-roll motion, whereas the waterfall field
rapidly grows by quantum fluctuations. Beyond the decoherence time, the
waterfall field becomes classical and approaches a time-dependent minimum,
which is determined by the value of the inflaton field and the self-interaction
of the waterfall field. During the final stage of inflation, the effective
inflaton potential is essentially quadratic, which leads to the standard
predictions of chaotic inflation. The model illustrates how the decay of a
false vacuum of GUT-scale energy density can end in a period of `chaotic
inflation'.Comment: 15 pages, 6 figures. v3: matches version published in JCA
Vibronic effects on resonant electron conduction through single molecule junctions
The influence of vibrational motion on electron conduction through single
molecules bound to metal electrodes is investigated employing first-principles
electronic-structure calculations and projection-operator Green's function
methods. Considering molecular junctions where a central phenyl ring is coupled
via (alkane)thiol-bridges to gold electrodes, it is shown that -- depending on
the distance between the electronic -system and the metal --
electronic-vibrational coupling may result in pronounced vibrational
substructures in the transmittance, a significantly reduced current as well as
a quenching of negative differential resistance effects.Comment: Submitted to Chem. Phys. Lett. (13 pages, 5 figures) this version:
typos and formating correcte
Conical intersections in an ultracold gas
We find that energy surfaces of more than two atoms or molecules interacting
via dipole-dipole po- tentials generically possess conical intersections (CIs).
Typically only few atoms participate strongly in such an intersection. For the
fundamental case, a circular trimer, we show how the CI affects adiabatic
excitation transport via electronic decoherence or geometric phase
interference. These phe- nomena may be experimentally accessible if the trimer
is realized by light alkali atoms in a ring trap, whose dipole-dipole
interactions are induced by off-resonant dressing with Rydberg states. Such a
setup promises a direct probe of the full many-body density dynamics near a
conical intersection.Comment: 4 pages, 4 figures, replacement to add archive referenc
Interstate Vibronic Coupling Constants Between Electronic Excited States for Complex Molecules
In the construction of diabatic vibronic Hamiltonians for quantum dynamics in
the excited-state manifold of molecules, the coupling constants are often
extracted solely from information on the excited-state energies. Here, a new
protocol is applied to get access to the interstate vibronic coupling constants
at the time-dependent density functional theory level through the overlap
integrals between excited-state adiabatic auxiliary wavefunctions. We discuss
the advantages of such method and its potential for future applications to
address complex systems, in particular those where multiple electronic states
are energetically closely lying and interact. As examples, we apply the
protocol to the study of prototype rhenium carbonyl complexes
[Re(CO)(N,N)(L)] for which non-adiabatic quantum dynamics within the
linear vibronic coupling model and including spin-orbit coupling have been
reported recently.Comment: 36 pages, 7 figures, 4 table
MODEL STUDIES ON THE TIME-RESOLVED MEASUREMENT OF EXCITED-STATE VIBRATIONAL DYNAMICS AND VIBRONIC COUPLING
The time-resolved detection of excited-state vibrational motion and vibronic coupling with femtosecond pump-probe spectroscopy is analyzed within the framework of lowest-order perturbation theory with respect to the radiation-matter interaction. It is shown for the simple model of a shifted harmonic oscillator in the Condon approximation that coherent wave packet motion in the excited state is detectable with laser pulses of suitable duration (neither too long nor too short). It is furthermore shown that intramolecular coupling of an optically bright electronic state to a dark state via a single vibrational mode may lead to a pronounced oscillatory electronic population dynamics which can be detected in a pump-probe experiment with sufticiently short pulses. In both cases we analyze the conditions under which the phenomena manifest themselves in the time-resolved pumpprobe signal
Ground-state degeneracies leave recognizable topological scars in the one-particle density
In Kohn-Sham density functional theory (KS-DFT) a fictitious system of
non-interacting particles is constructed having the same ground-state (GS)
density as the physical system of interest. A fundamental open question in DFT
concerns the ability of an exact KS calculation to spot and characterize the GS
degeneracies in the physical system. In this article we provide theoretical
evidence suggesting that the GS density, as a function of position on a 2D
manifold of parameters affecting the external potential, is "topologically
scarred" in a distinct way by degeneracies. These scars are sufficiently
detailed to enable determination of the positions of degeneracies and even the
associated Berry phases. We conclude that an exact KS calculation can spot and
characterize the degeneracies of the physical system
Resonant Auger decay of the core-excited CO molecule in intense X-ray laser fields
The dynamics of the resonant Auger (RA) process of the core-excited
CO(1s) molecule in an intense X-ray laser field is
studied theoretically. The theoretical approach includes the analogue of the
conical intersections of the complex potential energy surfaces of the ground
and `dressed' resonant states due to intense X-ray pulses, taking into account
the decay of the resonance and the direct photoionization of the ground state,
both populating the same final ionic states coherently, as well as the direct
photoionization of the resonance state itself. The light-induced non-adiabatic
effect of the analogue of the conical intersections of the resulting complex
potential energy surfaces gives rise to strong coupling between the electronic,
vibrational and rotational degrees of freedom of the diatomic CO molecule. The
interplay of the direct photoionization of the ground state and of the decay of
the resonance increases dramatically with the field intensity. The coherent
population of a final ionic state via both the direct photoionization and the
resonant Auger decay channels induces strong interference effects with distinct
patterns in the RA electron spectra. The individual impact of these physical
processes on the total electron yield and on the CO electron
spectrum are demonstrated.Comment: 13 figs, 1 tabe
- …