34 research outputs found

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Radiative Decay Modes of the D0D^{0} Meson

    Get PDF
    Using data recorded by the CLEO-II detector at CESR we have searched for four radiative decay modes of the D0D^0 meson: D0ϕγD^0\to\phi\gamma, D0ωγD^0\to\omega\gamma, D0KˉγD^0\to\bar{K}^{*}\gamma, and D0ρ0γD^0\to\rho^0\gamma. We obtain 90% CL upper limits on the branching ratios of these modes of 1.9×1041.9\times 10^{-4}, 2.4×1042.4\times 10^{-4}, 7.6×1047.6\times 10^{-4} and 2.4×1042.4\times 10^{-4} respectively.Comment: 15 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Analysis of gas adsorption in Kureha active carbon based on the slit-pore model and Monte-Carlo simulations

    No full text
    We analyse the adsorption of carbon dioxide and several light alkenes and alkanes on Kureha active carbon at a range of temperatures. We find generally good agreement between the alkene and alkane isotherms at moderate to high pressure, but find that at the lowest relative pressures for each gas there are significant discrepancies that seem to be correlated with the strength of gas-surface interactions. This pattern is similar to that observed in our previous work on the adsorption of light alkenes and alkanes on active carbon, except the errors here are much smaller. One possible explanation for this error is poor diffusion in the experiments at the lowest relative pressures, leading to measurements of non-equilibrium states. We suggest that this poor diffusion might be caused by potential barriers (i.e. it is activated diffusion) in the narrowest pores. We also find that our analysis of the adsorption of carbon dioxide at 273 K is inconsistent with all the alkene and alkane data. We suggest this discrepancy arises because our model of gas-surface interactions does not take contributions from polar surface sites into account. Although this study is specific to Kureha active carbon, we expect that our conclusions are relevant to other studies of gas adsorption on active carbon; they highlight the need for great care when taking measurements at low pressures, and motivate improvements in molecular models for gas adsorption in active carbons

    Molecular Correlates of Fragile X Syndrome and FXTAS

    No full text
    corecore