35 research outputs found

    Pattern and determinants of BCG immunisation delays in a sub-Saharan African community

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood immunisation is recognised worldwide as an essential component of health systems and an indispensable indicator of quality of care for vaccine-preventable diseases. While performance of immunisation programmes is more commonly measured by coverage, ensuring that every child is immunised at the earliest/appropriate age is an important public health goal. This study therefore set out to determine the pattern and predictors of Bacille de Calmette-Guérin (BCG) immunisation delays in the first three months of life in a Sub-Saharan African community where BCG is scheduled at birth in order to facilitate necessary changes in current policy and practices for improved services.</p> <p>Methods</p> <p>A cross-sectional study in which immunisation delays among infants aged 0-3 months attending community-based BCG clinics in Lagos, Nigeria over a 2-year period from July 2005 to June 2007 were assessed by survival analysis and associated factors determined by multivariable logistic regression. Population attributable risk (PAR) was computed for the predictors of delays.</p> <p>Results</p> <p>BCG was delayed beyond three months in 31.6% of all eligible infants. Of 5171 infants enrolled, 3380 (65.4%) were immunised within two weeks and a further 1265 (24.5%) by six weeks. A significantly higher proportion of infants born in hospitals were vaccinated in the first six weeks compared to those born outside hospitals. Undernourishment was predictive of delays beyond 2 and 6 weeks while treated hyperbilirubinaemia was associated with decreased odds for any delays. Lack of antenatal care and multiple gestations were also predictive of delays beyond 6 weeks. Undernourishment was associated with the highest PAR for delays beyond 2 weeks (18.7%) and 6 weeks (20.8%).</p> <p>Conclusions</p> <p>BCG immunisation is associated with significant delays in this setting and infants at increased risk of delays can be identified and supported early possibly through improved maternal uptake of antenatal care. Combining BCG with subsequent immunisation(s) at 6 weeks for infants who missed the BCG may be considered.</p

    Partner randomized controlled trial: study protocol and coaching intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many children with asthma live with frequent symptoms and activity limitations, and visits for urgent care are common. Many pediatricians do not regularly meet with families to monitor asthma control, identify concerns or problems with management, or provide self-management education. Effective interventions to improve asthma care such as small group training and care redesign have been difficult to disseminate into office practice.</p> <p>Methods and design</p> <p>This paper describes the protocol for a randomized controlled trial (RCT) to evaluate a 12-month telephone-coaching program designed to support primary care management of children with persistent asthma and subsequently to improve asthma control and disease-related quality of life and reduce urgent care events for asthma care. Randomization occurred at the practice level with eligible families within a practice having access to the coaching program or to usual care. The coaching intervention was based on the transtheoretical model of behavior change. Targeted behaviors included 1) effective use of controller medications, 2) effective use of rescue medications and 3) monitoring to ensure optimal control. Trained lay coaches provided parents with education and support for asthma care, tailoring the information provided and frequency of contact to the parent's readiness to change their child's day-to-day asthma management. Coaching calls varied in frequency from weekly to monthly. For each participating family, follow-up measurements were obtained at 12- and 24-months after enrollment in the study during a telephone interview.</p> <p>The primary outcomes were the mean change in 1) the child's asthma control score, 2) the parent's quality of life score, and 3) the number of urgent care events assessed at 12 and 24 months. Secondary outcomes reflected adherence to guideline recommendations by the primary care pediatricians and included the proportion of children prescribed controller medications, having maintenance care visits at least twice a year, and an asthma action plan. Cost-effectiveness of the intervention was also measured.</p> <p>Discussion</p> <p>Twenty-two practices (66 physicians) were randomized (11 per treatment group), and 950 families with a child 3-12 years old with persistent asthma were enrolled. A description of the coaching intervention is presented.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT00860834">NCT00860834</a>.</p

    Cost effectiveness analysis of Year 2 of an elementary school-located influenza vaccination program–Results from a randomized controlled trial

    Get PDF
    BACKGROUND: School-located vaccination against influenza (SLV-I) has the potential to improve current suboptimal influenza immunization coverage for U.S. school-aged children. However, little is known about SLV-I’s cost-effectiveness. The objective of this study is to establish the cost-effectiveness of SLV-I based on a two-year community-based randomized controlled trial (Year 1: 2009–2010 vaccination season, an unusual H1N1 pandemic influenza season, and Year 2: 2010–2011, a more typical influenza season). METHODS: We performed a cost-effectiveness analysis on a two-year randomized controlled trial of a Western New York SLV-I program. SLV-I clinics were offered in 21 intervention elementary schools (Year 1 n = 9,027; Year 2 n = 9,145 children) with standard-of-care (no SLV-I) in control schools (Year 1 n = 4,534 (10 schools); Year 2 n = 4,796 children (11 schools)). We estimated the cost-per-vaccinated child, by dividing the incremental cost of the intervention by the incremental effectiveness (i.e., the number of additionally vaccinated students in intervention schools compared to control schools). RESULTS: In Years 1 and 2, respectively, the effectiveness measure (proportion of children vaccinated) was 11.2 and 12.0 percentage points higher in intervention (40.7 % and 40.4 %) than control schools. In year 2, the cost-per-vaccinated child excluding vaccine purchase (59.88in2010US59.88 in 2010 US ) consisted of three component costs: (A) the school costs (8.25);(B)theprojectcoordinationcosts(8.25); (B) the project coordination costs (32.33); and (C) the vendor costs excluding vaccine purchase (16.68),summedthroughMonteCarlosimulation.ComparedtoYear1,thetwocomponentcosts(A)and(C)decreased,whilethecomponentcost(B)increasedinYear2.Thecostpervaccinatedchild,excludingvaccinepurchase,was16.68), summed through Monte Carlo simulation. Compared to Year 1, the two component costs (A) and (C) decreased, while the component cost (B) increased in Year 2. The cost-per-vaccinated child, excluding vaccine purchase, was 59.73 (Year 1) and 59.88(Year2,statisticallyindistinguishablefromYear1),higherthanthepublishedcostofprovidinginfluenzavaccinationinmedicalpractices(59.88 (Year 2, statistically indistinguishable from Year 1), higher than the published cost of providing influenza vaccination in medical practices (39.54). However, taking indirect costs (e.g., averted parental costs to visit medical practices) into account, vaccination was less costly in SLV-I (23.96inYear1,23.96 in Year 1, 24.07 in Year 2) than in medical practices. CONCLUSIONS: Our two-year trial’s findings reinforced the evidence to support SLV-I as a potentially favorable system to increase childhood influenza vaccination rates in a cost-efficient way. Increased efficiencies in SLV-I are needed for a sustainable and scalable SLV-I program
    corecore